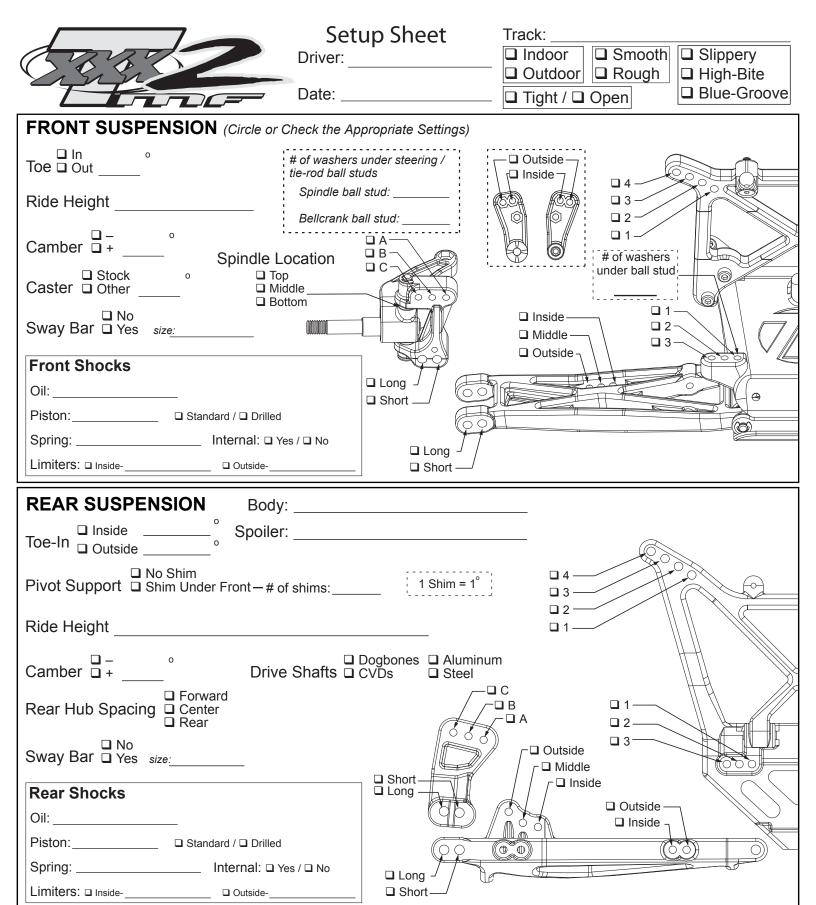


1/10 Scale 2wd Electric Off-Road Racing Truck

## **MF2 OWNER'S MANUAL**


Carefully read through all instructions to familiarize yourself with the parts, construction technique, and tuning tips outlined in this manual. Being able to grasp the overall design of your new *XXX-T MF2* racing truck before begining the construction process will ensure a smooth assembly.

Take your time and pay close attention to detail. Keep this manual for future reference.



Always Racing Towards The Future.

Team Losi, A Division of Horizon Hobby inc., 4710 East Guasti Rd., Ontario CA 91761 Phone: (909) 390-9595 / Fax: (909) 390-5356 (web) www.TeamLosi.com / (email) feedback@TeamLosi.com



 Tires
 Compound
 Foam
 Motor: \_\_\_\_\_ Pinion/Spur: \_\_/\_\_

 Front: \_\_\_\_\_
 Battery Position: \_\_\_\_\_\_

**Weather Conditions/Notes:** 

| Set                                                      |                                      | rack:                                                                  |
|----------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|
| Driver:                                                  |                                      | ☐ Indoor ☐ Smooth ☐ Slippery                                           |
| Date:                                                    |                                      | ☐ Outdoor ☐ Rough ☐ High-Bite ☐ Tight / ☐ Open ☐ Blue-Groove           |
|                                                          |                                      | I fight? I open                                                        |
| FRONT SUSPENSION (Circle or Check the Ap                 | propriate Settings)                  |                                                                        |
| Toe □ Out1  # of washers tie-rod ball sti                |                                      | Outside Inside                                                         |
| Ride Height Arms level                                   | I stud:1                             |                                                                        |
| Camber + 1 Spindle Location                              | all stud:0                           | ■ 2 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □                              |
| Stock Caster Other  Other  Bottom                        |                                      | under ball stud                                                        |
| Sway Bar 🗅 Yes size:                                     |                                      | □ Inside □ □ 1 □ 2 □ 3 □ 3 □ 1 □ 2 □ 3 □ 3 □ 3 □ 3 □ 3 □ 3 □ 3 □ 3 □ 3 |
| Front Shocks                                             |                                      | □ Outside -                                                            |
| Oil:30wt.                                                | ■ Long J □ Short □                   |                                                                        |
| Piston: #56 ■ Standard / □ Drilled                       |                                      |                                                                        |
| Spring: Red Internal: □ Yes / ■ No                       | ■ Long                               |                                                                        |
| Limiters: Inside Outside                                 | ☐ Short —                            |                                                                        |
| REAR SUSPENSION Body: MF2                                |                                      |                                                                        |
| Toe-In Inside Spoiler: Standard Outside                  |                                      |                                                                        |
| □ No Shim Pivot Support ■ Shim Under Front — # of shims: | 2 1 Shim = 1°                        | □ 4<br>■ 3                                                             |
| Ride Height Dogbones just below level                    |                                      |                                                                        |
| Camber $\Box + \underline{0}$ Drive Shafts $\Box 0$      | Dogbones ☐ Aluminum CVDs ☐ Steel ☐ C |                                                                        |
| Rear Hub Spacing ■ Center □ Rear                         | / /-□ [                              | B 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                |
| Sway Bar □ Yes size:                                     | □ Short                              | Outside  Middle                                                        |
| Rear Shocks                                              | Long                                 | Inside                                                                 |
| Oil:30wt.                                                |                                      | ☐ Outside ☐ Inside ☐                                                   |
| Piston: #56 ■ Standard / □ Drilled                       |                                      |                                                                        |
| Spring:Red Internal: □ Yes / ■ No                        | Long                                 |                                                                        |
| Limiters:   Inside   Outside                             | ☐ Short—                             |                                                                        |
| Tires Compound                                           | Foam                                 | Motor: Pinion/Spur: / 86                                               |
| Front: 8-Rib (LOSA7507R) Red                             | Standard                             |                                                                        |
| Rear: King Pin (LOSA7637R) Red                           | Standard                             | Battery Position: Middle                                               |
| Weather Conditions/Notes:                                |                                      |                                                                        |

### **Welcome Team Losi XXX-T MF2 Owner!**

Thank you for choosing the Team Losi *XXX-T Matt Francis, Edition 2*. Over the past year and a half I, along with Team Losi engineers and team members, have done extensive testing and development to give you the truck you just purchased. In addition to the many specialty parts used on my previous race winning truck this *MF2* includes a host of new and revised parts that have helped me and my team mates get to the winners circle time and time again. I think you will find it is tougher, faster, and easier to drive than anything out there. As you build your new *XXX-T MF2* kit, be sure to read and follow the instructions carefully and don't forget to check out the setup and tuning tips in the back of this manual. I hope you will enjoy your new Team Losi *XXX-T M F2* as much as I do and wish you much success. See you at the track!

Good Luck!

#### 1. INTRODUCTION

#### TRIPLE-X-T FRANCIS, EDITION 2, COMPLETED KIT DIMENSIONS

Length: 16.195" Front Width: 12.725" Rear Width: 12.875" Height: 5.505"

Wheelbase: 11.050" All dimensions at ride height. Weight will vary depending on accessories.

#### NOTES & SYMBOLS USED

#### Step A-1

This is a common step sequence found at the beginning of each new illustration throughout the manual.

☐ 1. Each step throughout the entire manual has a check box to the left of it. As you complete each step, mark the box with a check. If you need to take a break and return to building at a later time, you will be able to locate the exact step where you left off.

\*NOTE: This is a common note. It is used to call attention to specific details of a certain step in the assembly.

IMPORTANT NOTE: Even if you are familiar with Team Losi kits, be sure and pay attention to these notes. They point out very important details during the assembly process. Do not ignore these notes!

The Team Losi icon designates a performance tip. These tips are not necessary, but can improve the performance of your *XXX-T MF2* truck.

In illustrations where it is important to note which direction parts are facing, a helmet like this one will be included in the illustration. The helmet will always face with a driver's perspective. Any reference to the right or left side will relate to the direction of the helmet.

#### KIT/MANUAL ORGANIZATION

The kit is composed of different bags marked A through G. Each bag contains all of the parts necessary to complete a particular section of the kit. Some of these bags have subassembly bags within them. It is essential that you open only one bag at a time and follow the correct assembly sequence, otherwise you may face difficulties in finding the correct part. It is helpful to read through the instructions for an entire bag prior to beginning assembly. Key numbers (in parentheses) have

been assigned to each part and remain the same throughout the manual. In some illustrations, parts which have already been installed are not shown so that the current steps can be illustrated more clearly.

For your convenience, an actual-size hardware identification guide is included with each step. To check a part, hold it against the silhouette until the correct part is identified. In some cases extra hardware has been supplied for parts that may be easy to lose.

The molded parts in the kit are manufactured to demanding tolerances. When screws are tightened to the point of being snug, the parts are held firmly in place. For this reason, it is very important that screws not be overtightened in any of the plastic parts.

To ensure that parts are not lost during construction, it is recommended that you work over a towel or mat to prevent parts from rolling away.

#### **IMPORTANT SAFETY NOTES**

- 1. Select an area for assembly that is away from the reach of small children. Some parts in this kit are small and can be swallowed by children, causing choking and possible internal injury.
- 2. The shock fluid and greases supplied should be kept out of children's reach. *They are not intended for human consumption!*
- 3. *Exercise care* when using *any* hand tools, sharp instruments, or power tools during construction.
- 4. Carefully read all manufacturers' warnings and cautions for any chemicals, glues, or paints that may be used for assembly and operating purposes.

#### TOOLS REQUIRED

Team Losi has supplied all necessary Allen wrenches and a special wrench that is needed for assembly and adjustments. The following common tools will also be required: Needle nose pliers, regular pliers, hobby knife, scissors or other body cutting/trimming tools, and a soldering iron may be necessary for radio installation. 3/16", 1/4", 11/32", and 3/8" nut drivers are optional.

#### RADIO/ELECTRICAL

A suggested radio layout is provided in this manual. Your high performance R/C center should be consulted regarding specific questions pertaining to radio/electrical equipment.

#### HARDWARE IDENTIFICATION

When in question, use the hardware identification guide in each step. For screws, the prefix number designates the screw size and number of threads per inch (i.e., 4-40 is #4 screw with 40 threads per inch). The second number or fraction designates the length of the screw. For Cap Head and Button Head Screws, this number refers to the length of the threaded portion of the screw. For Flat Head Screws, this number refers to the overall length of the screw. Bearings and bushings are referenced by the inside diameter  $\mathbf{x}$  outside diameter. Shafts and pins are referred to by diameter  $\mathbf{x}$  length. Washers are described by inside diameter or the screw size that will pass through the inside diameter. E-clips are sized by the shaft diameter that they attach to.

#### MOTORS AND GEARING

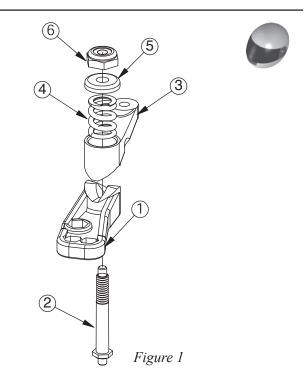
The XXX-TMF2 includes an 86-tooth, 48-pitch Kevlar spur gear. The overall internal drive ratio of the transmission is 2.56:1. The pinion gear that is used will determine the final drive ratio. To calculate the final drive ratio, first divide the spur gear size by the pinion gear size. For example, if you are using a 18-tooth pinion gear, you would divide 86 (spur gear size) by 18 (pinion gear size) 86/18=4.78. This tells you that 4.78 is the external drive ratio. Next, multiply the internal drive ratio (2.56) by the external drive ratio (in this case 4.78).  $2.56 \times 4.78 = 12.23$ . This means that by using a 18-tooth pinion gear with a 86-tooth spur gear, the final drive ratio is 12.23:1.

Consult your high-performance shop for recommendations to suit your racing style and class. The chart below lists some of the more common motor types and a recommended initial gearing for that motor. Ratios can be adjusted depending on various track layouts, tire sizes, and battery types.

| RECOMMENDED      | INITIAL GEARING FOR COMMON | MOTORS |
|------------------|----------------------------|--------|
| TYPE OF MOTOR    | PINION                     | SPUR   |
| 24° Stock        | 19-21                      | 86     |
| 10-Turn Modified | 17                         | 86     |
| 11-Turn Modified | 18                         | 86     |
| 12-Turn Modified | 19                         | 86     |
| 13-Turn Modified | 20                         | 86     |
| 14-Turn Modified | 21                         | 86     |
| 15-Turn Modified | 22                         | 86     |
| 16-Turn Modified | 23                         | 86     |

#### TABLE OF CONTENTS

| 1. INTRODUCTIONi          | 2. BAGA1-2                           |
|---------------------------|--------------------------------------|
| Completed Kit Dimensionsi | 3. BAG B                             |
| Notes & Symbolsi          | 4. BAG C8-11                         |
| Kit Manual Organizationi  | 5. BAG D 12-19                       |
| Important Safety Notesi   | 6. BAG E 20-23                       |
| Tools Requiredii          | 7. BAG F                             |
| Radio/Electricalii        | 8. BAG G 25-30                       |
| Hardware Identificationii | 9. Checklist Before Your First Run31 |
| Recommended Gearingii     | 10. Tips From the Team               |
|                           | 11. Spare Parts List                 |


Team Losi is continually changing and improving designs; therefore, the actual part may appear slightly different than the illustrated part. Illustrations of parts and assemblies may be slightly distorted to enhance pertinent details.

## **BAG A**

#### **Step A-1** Servo Saver Assembly:



- 1. Place the Servo Saver Bottom (1) over the Servo Saver Post (2) and slide the Servo Saver Bottom all the way against the hex at the opposite end. Be sure that the hex on the Servo Saver Post is inserted into the hex in the Servo Saver Bottom.
- □ 2. Slide the Servo Saver Top (3) down over the Servo Saver Post so that the 'V' area of the Servo Saver Top rests in the 'V' area of the Servo Saver Bottom. The arm on the Servo Saver Top and the arm on the Servo Saver Bottom should now point in opposite directions as shown in Figure 1.
- ☐ 3. Slide the Servo Saver Spring (4) over the Servo Saver Post and push it into the recessed area of the Servo Saver Top. Install the Servo Saver Spring Cap (5) and thread the 6-40 Locknut (6) onto the end of the Servo Saver Post.
- 4. Tighten the 6-40 Locknut all the way down and then loosen it two full turns (e.g. 360° x 2). This is a good starting point for the adjustment. Once assembly is complete, if you wish, the servo saver can be adjusted tighter or looser.



#### Step A-2 Ball Stud Install:









- 1. Insert a 4-40 Mini-Locknut (7) into the outer hex area in the Servo Saver Bottom (1) and steering Idler Arm (8) as shown in Figure 2. Thread a 3/16" Ball Stud (11) through the outside hole in each arm, into the Nuts, and tighten. Insert a 4-40 Mini-Locknut into the hex area in the Servo Saver Top (3). Thread a 3/16" Ball Stud through the hole in the Arm, into the Nut, and tighten.
- ☐ 2. Insert a 4-40 Mini-Locknut into the hex areas in the rear holes of the Servo Saver Bottom and the steering Idler Arm as shown in Figure 2. Thread a 3/16" Ball Stud through the Arms, into each Nut, and tighten.

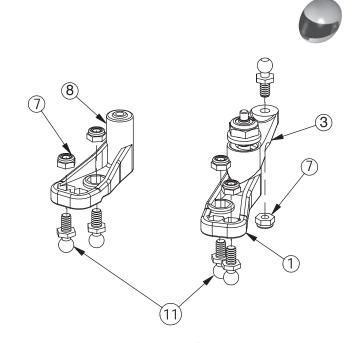
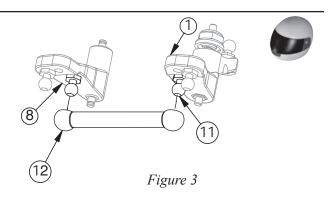




Figure 2

### **Step A-3** Servo Link:

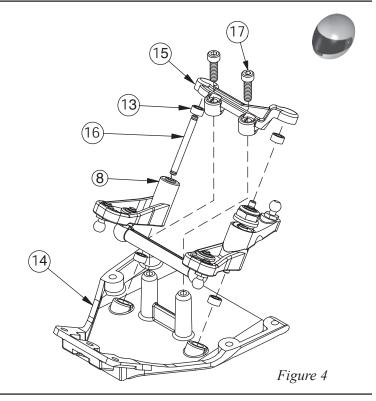
\*NOTE: Be sure to snap each end of the Draglink onto the correct Ball Studs as shown!

1. Snap one end of the steering Draglink (12) to the rear Ball Stud (11) on the Servo Saver Bottom (1). Snap the other end to the Rear Ball Stud on the steering Idler Arm (8).



#### **Step A-4** Steering Install:



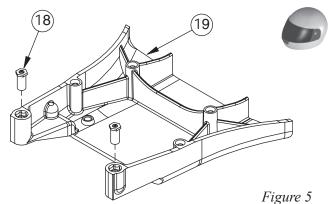









- 1. Insert a 3/32" x 3/16" Ball Bearing (13) into each of the two, angled holes in the bottom of the front Kickplate (14). Insert the other two Bearings into the two outer holes in the Steering Brace (15).
- □ 2. Insert a 3/32" x .930" Hinge Pin (16) through the hole in the steering Idler Arm (8) and center the Hinge Pin in the Idler Arm. Place the Servo Saver assembly and the steering Idler Arm into the Bearings in the Kickplate so that the installed Draglink is to the front as shown in Figure 4.
- ☐ 3. Place the Steering Brace on top of the Servo Saver assembly and steering Idler Arm ensuring that the Ball Bearings slide over the Pins
- There is a short Thread-Cutting Screw included in the Wrench bag. This Screw can be used to tap threads in the holes in the Kickplate. Pre-tapping these holes makes it easier to install the Screws during assembly.
- ☐ 4. Secure the Steering Brace to the Kickplate using two 4-40 x 3/8" Cap Head Screws (17).




#### **Step A-5** Threaded Insert Install:





1. Install a Threaded Insert (18) into the top of each of the two forward holes in the main Chassis (19). The inserts should be installed with the hex-side up as shown in Figure 5. Press the Threaded Inserts all the way into the holes in the Chassis, lining up the hex on the inserts with the hex in the holes.



#### **Step A-6** Kickplate Install:

There is a short Thread-Cutting Screw included in the Wrench bag. This Screw can be used to tap threads into the back two holes in the front part of the main Chassis. Pre-tapping these holes makes it easier to install the Screws during assembly.

**IMPORTANT NOTE:** Ensure that the hex of the Threaded Insert remains seated in the hex area on top of the Chassis.

□ 1. Attach the front Kickplate (14) to the bottom of the main Chassis (19). Align the four holes in the Kickplate with the four holes in the main Chassis. Secure the Kickplate to the Chassis by threading two 4-40 x 3/8" Cap Head Screws (17) through the forward holes and into the Threaded Inserts (18). Thread two more 4-40 x 3/8" Cap Head Screws through the two rear holes of the Kickplate and into the Chassis.

\*NOTE: After completion of this bag, there will be some leftover parts which will be used in a later step in this manual.



(17)

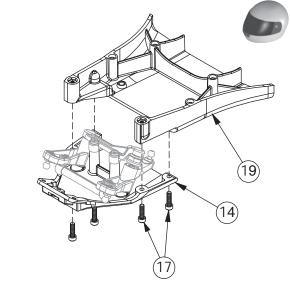
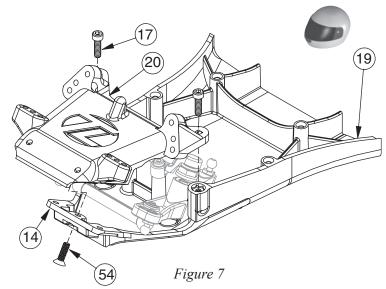



Figure 6

## **BAG B**

### Step B-1 Front Bulkhead Install:




(17)

(54)

There is a short Thread-Cutting Screw included in the Wrench bag. This Screw can be used to tap threads into the middle bottom hole in the front Bulkhead. Pre-tapping this hole makes it easier to install the Screw during assembly.

☐ 1. Position the front Bulkhead (20) on top of the front Kickplate (14) and main Chassis (19) as shown in Figure 7. Secure the front Bulkhead to the Chassis by threading two 4-40 x 3/8" Cap Head Screws (17) through the hole in the top of the Bulkhead and into the Threaded Inserts in the Chassis.

□ 2. Secure the front Kickplate to the front Bulkhead by threading a 4-40 x 3/8" Flat Head Screw (54) through the center hole in the front of the Kickplate and into the Bulkhead.



#### **Step B-2** Front Shock Tower Assembly:



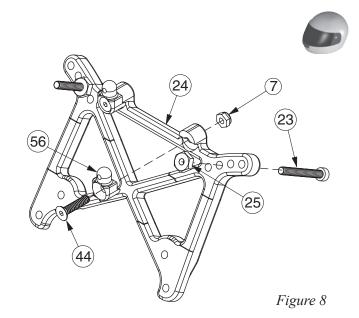






(23








☐ 1. Insert two 4-40 x 7/8" Cap Head Screws (23) — one on each side — through the second hole out(#2) in the top of the front Shock Tower (24). Secure the Screws to the Shock Tower (24) by threading a 4-40 Nut (25) over each Screw and tightening.

2. Press a 4-40 Mini Locknut (7) into the hex area in the top, rear of each side of the front Shock Tower. Insert a 4-40 x 1/2" Flat Head Screw (44) into each of the two front Body Mounts (56) from the side with the recess for the head of the Screw.

☐ 3. Attach a front Body Mount to the front of each side of the front Shock Tower so that the posts point up as shown in Figure 8. Secure the Body Mounts by threading the Screws through the Tower and into the Locknuts.



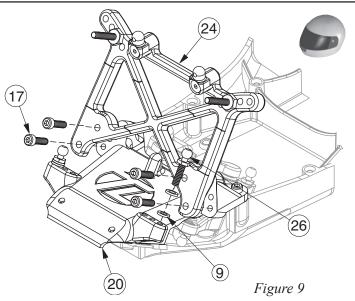
#### **Step B-3** Front Shock Tower Install:










(17)



IMPORTANT NOTE: The Screws in the top of the Shock Tower must be pointing forward as shown in Figure 9.

□ 1. Attach the front Shock Tower (24) to the front Bulkhead (20) with four 4-40 x 3/8" Cap Head Screws (17). The Screws thread into the top-most and bottom-most holes in the Bulkhead, corresponding with the appropriate holes in the front Shock Tower. The middle holes in the Bulkhead are not used.

☐ 2. Place two Ball Stud Washers (9) over each of the two 3/8" Ball Studs (26). Thread a 3/8" Ball Stud into the outside of the three camber position holes (#3), on each side of the front Bulkhead.



### **Step B-4** Spindle Carrier Assembly:



<u>32</u> <u>36</u> <u>41</u> <u>71</u>

☐ 1. Insert a front Axle (30) into each of the front Spindles [left (28), right (29)] as shown. The hole in the Axle should line up with the hole in the Spindle.

□ 2. Attach the left Spindle (28) to the left Spindle Carrier (33) by aligning the holes in each part and inserting a 1/8" x 1.250" Hinge Pin (71) from the bottom. Do not insert the Pin all the way through both parts yet.

☐ 3. Insert a .050" front Spindle Spacer (36) between the top of the Spindle and the Spindle Carrier as shown in Figure 10. Once the Spacer is in place, insert the Hinge Pin through the Spacer and the top of the Spindle Carrier.

4. Center the Hinge Pin and secure it with two 1/8" E-clips (41). Apply a small drop of Thread Lock (21) (found in this bag) to a 5-40 Set Screw (32). With the Hinge Pin still centered, thread the Set Screw into the back side of the Axle and tighten.

5. Repeat Steps 1-4 for the right Spindle (29) and right Spindle Carrier (34).

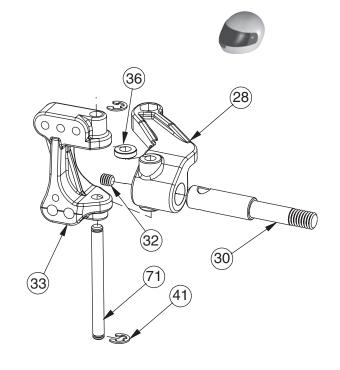
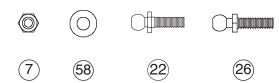




Figure 10

### Step B-5 Ball Stud Install:



IMPORTANT NOTE: Do not overtighten the Ball Studs in the Spindle Carriers.

☐ 1. Insert a 3/8" Short Head (Silver Colored) Ball Stud (22) into the middle of the top holes in the left Spindle Carrier (33), from the front as shown, and tighten.

2. Insert a 4-40 Mini Locknut (7) onto the hex area in the top of the left Spindle (28). Place a #4 HardEned Washer (58) over a 3/8" Ball Stud (26) and thread it into the Mini Nut from the bottom of the Spindle, and tighten.

3. Repeat Steps 1-2 for the right side Spindle Carrier Asembly. Once assembly of your new XXX-T MF2 is complete, you may notice that the tires toe-in slightly as the suspension compresses. We have found this setting to yield the best performance. Should you prefer to change this so that the tires do not toe in, you can remove the Ball Stud Washer under the Ball Stud on the Spindles.

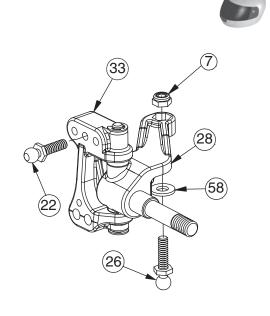
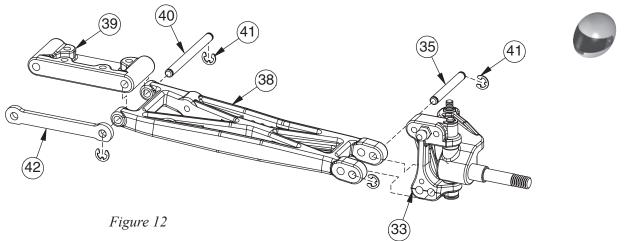



Figure 11


### **Step B-6** Front Suspension Assembly:



- 1. Place the left Spindle and Carrier assembly (Figure 11) into a front suspension Arm (38) as shown in Figure 12. Note that the Spindle Arm faces the side of the suspension Arm with the Shock mount holes (rear) and the Ball Stud (22) in the Spindle Carrier is pointing forward. Line up the two sets of holes in the Spindle Carrier (33) with the holes in the front Arm. Install a 1/8" E-clip on one end of each 1/8" x .960" Hinge Pin (35) and slide it through the outer-most of the two holes in the Arm and Spindle Carrier. Attach a 1/8" E-clip (41) to the other side of the Hinge Pin.
- 2. Install a 1/8" E-clip on one end of each inner 1/8" x 1.42" Hinge Pin (40).
- 3. Attach the Arm to the left side of the front Pivot Block (39) by inserting Hinge Pin from the back side, through the inside hole in the front Arm and Pivot Block, as shown in Figure 12.
- 4. Repeat Steps 1-3 for the right Spindle and Carrier assembly and remaining front suspension Arm.
- 5. Slide the front Hinge Pin Brace (42) over both front inner Hinge Pins with the flat side pointing down. The E-clip grooves in both Hinge Pins should be exposed in front of the Brace. Secure the Brace by installing a 1/8" E-clip to the front of each Hinge Pin.

The XXX-T MF2 has been designed with Varaible Length Arms (VLA). For a more detailed description of the VLA system, please read the VLA section in the back of this manual.

**IMPORTANT NOTE:** Make sure that the Hinge Pin is installed into the outer-most hole for both the VLA Arms and Spindle Carriers.



# **Step B-7** Front Suspension Install:



- 1. Hold the Chassis assembly upside down. Place the front Pivot Block (39) over the front edge of the front Kick plate (14) as shown in Figure 13. The front edge of the front Bulkhead (20) should be positioned between the front Pivot Block and the Hinge Pin Brace (42).
- $\square$  2. While holding the front suspension assembly in place, position the front Bumper (43) on the bottom of the front Pivot Block so that the four holes in the Bumper are aligned with the four holes in the Pivot Block. The Bumper should be attached as shown so that the edges curve towards the top of the Chassis. Secure the Bumper and Pivot Block to the front Bulkhead and Kickplate by threading two 4-40 x 5/8" Flat Head Screws (150) through two forward-most holes in the Bumper and Pivot Block and into the Bulkhead.
- ☐ 3. Thread the two 4-40 x 7/8" Flat Head Screws (89) throught the two remaining holes in the front Bumper and into the Bulkhead.

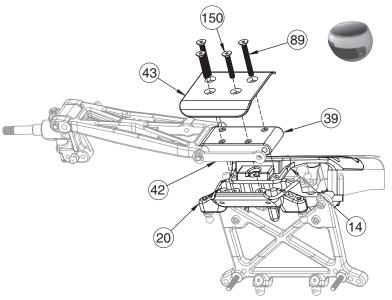
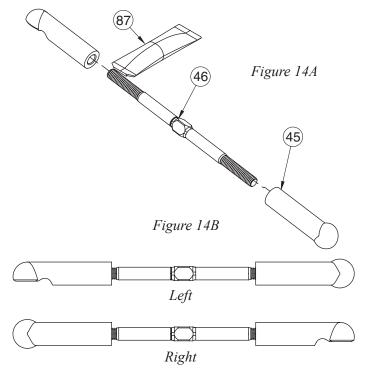



Figure 13

#### **Step B-8** Tierod - Camber Link Assembly:

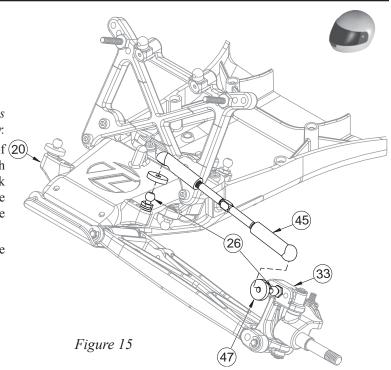



There is a small container/package of White Grease (87) in this bag. It is recommened that a small amount of this be applied to the threads of the Turnbuckles before trying to thread on the plastic Rod Ends. Please use this lube sparingly as it will be used during the assembly of the Differential as well.

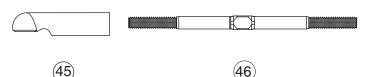
\*NOTE: The two ends of the Turnbuckle are threaded opposite. The end closest to the groove, next to the square, has standard right-hand threads, the other end has left-hand threads. This allows the length of the Tierods, once installed, to be adjusted without removing them.

1. Thread a plastic Rod End (45) onto each end of a 2-3/8" Turnbuckle (46). Tighten both Rod Ends equally until the Tierod is the same length, and the Rod Ends are in the same orientation, as the assembled Tierod in Figure 14B (Left).

2. Assemble the second camber link with the Rod Ends orientated as Figure 14B (Right).



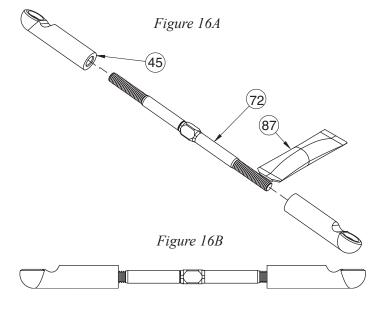

#### Step B-9 Camber Link Install:


\*NOTE: Assure that the grooves on all of the **front** Turnbuckles are located on the drivers **right**-hand side for easier adjustment later.

1. Place a "Foam Thing" (47) over the Ball Studs (22) on each of (20) the Spindle Carriers (33), (34) and on the Ball Studs (26) on both sides of the Bulkhead (20). Next, attach one side of a camber link assembly (Figure 14B; Left) to the Ball Stud on the left side of the Bulkhead. Attach the other side of the camber link assembly to the silver colored Ball Stud in the Spindle Carrier.

2. Attach the second camber link Tierod to the right side of the car in the same fashion.

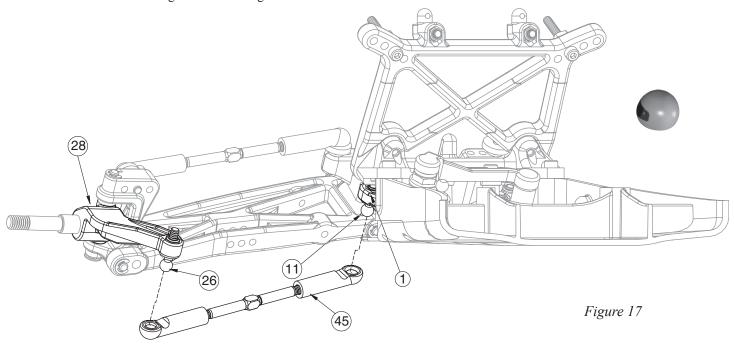



#### **Step B-10 Steering Tierod:**



There is a small container/package of White Grease (87) in this bag. It is recommened that a small amount of this be applied to the threads of the Turnbuckles before trying to thread on the plastic Rod Ends. Please use this lube sparingly as it will be used during the assembly of the Differential as well.

\*NOTE: The two ends of the Turnbuckle are threaded opposite. The end closest to the groove, next to the square, has standard right-hand threads, the other end has left-hand threads. This allows the length of the Tierods, once installed, to be adjusted without removing them.


□ 1. Thread a Plastic Rod End (45) onto each End of a 2-3/8" Turnbuckle (46). Tighten both Rod Ends equally until the Rod is the same length and the Rod Ends are in the same orientation as the assembled Tierod in Figure 16B. Make two of these Tierod assemblies.



#### **Step B-11** Steering Tierod Install:

\*NOTE: Assure that the grooves on all of the front Turnbuckles are located on the drivers right-hand side for easier adjustment later.

- 1. Snap one end of a steering Tierod assembly (Figure 16B) to the Ball Stud (11) in the steering Servo Saver Bottom (1). Snap the other end to the Ball Stud (26) in the left Spindle (28).
- 2. Attach the second steering Tierod to the right side of the car.



## **BAG** C

### Step C-1 Universal Assembly:

- 1. Position the U-Joint Cross Ball (60) inside the "ears" on the rear Axle (62) with the threaded hole pointing away from the Axle. Align the through hole in the Ball with the two holes in the Axle.
- 2. Slide the 2.5mm x 12mm Solid Pin (61) through the holes in the Axle and Ball. Center the Pin in the Axle.
- IMPORTANT NOTE: Apply the thread-lock to the Set Screw before threading it into the Cross Ball. If Thread Lock is not used, the Set Screw could loosen during operation causing your Universal to possibly fail or be damaged.
- □ 3. Apply a small drop of Thread Lock (21) (used previously in Bag B) to a 4-40 x 3/32" Set Screw (56). With the Pin centered in the Axle, secure it by threading the Set Screw into the threaded hole in the Cross Ball.
- 4. Allign the flat sections on the Dogbone (59) with the flat sections in the end of the Yoke (63) and place them together. Secure the two by applying a small drop of Thread Lock to a 4-40 x 3/8" Cap Head Screw (17) and threading it through the Yoke and into the Dogbone and tightening.
- □ 5. Install the Yoke onto the Cross Ball pins by first inserting one pin of the Ball into one "ear" of the Yoke at a slight angle. Gently spread the "ears" of the Yoke and slip the second "ear" of the Yoke over the remaining pin on the Ball.
- ☐ 6. Build two of these assemblies.

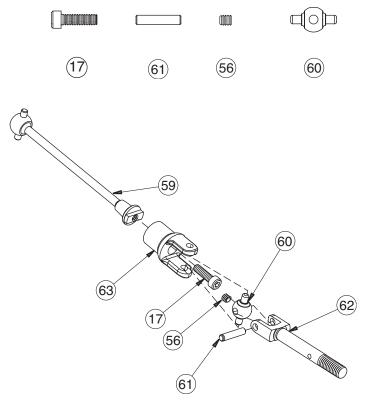
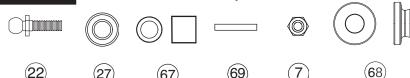




Figure 18

#### **Step C-2** Rear Hub Assembly:



□ 1. Thread a silver colored Ball Stud (22) into the inside hole (A) of the left rear Hub (66), from the front (the side without the recessed area) and secure it from the back side with a 4-40 Mini-Nut (7) as shown in Figure 19.

### ⚠ IMPORTANT NOTE: Do not overtighten the Ball Studs.

\*NOTE: If the  $3/16" \times 3/8"$  Bearings only have one Teflon<sup>TM</sup> seal (colored, woven-looking) in it, position the seal to the outside of the Hub.

- 2. Press a 3/16" x 3/8" sealed Bearing (27) into the inside of the left rear Hub. Slide a rear Axle (62) through the sealed Bearing and the rear Hub.
- 4. Slide an inner rear Bearing Spacer (67) over the rear Axle, from the outside, against the inside of the first Bearing. Place a second 3/16" x 3/8" Bearing over the rear Axle and press the Bearing into the outside of the rear Hub.
- 5. Place a rear Axle Spacer (68) over the rear Axle, small side first, against the outside Bearing.
- 6. Secure the rear Axle and the rear Axle Spacer by inserting a 1/16" x 7/16" Spirol Pin (69) through the small hole in the rear Axle. The Pin should be centered in the Axle.
- 7. Repeat Steps 1-6 for the right rear Hub (65).

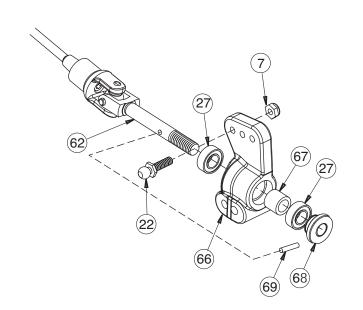
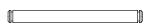




Figure 19

### **Step C-3** Rear Hub Assembly Install:







**(41)** 



71

- 1. Place the left rear Hub (66) between the outer rails of the left rear suspension Arm (51) (Marked "L"). Be sure that the Ball Stud in the Hub Carrier is pointing towards the front (side with Shock mount) of the Arm. Position a 0.060" rear Hub Spacer (70) between the Hub and the Suspension Arm on each side of the Hub.
- 2. Install a 1/8" E-clip (41) onto one side of the outer rear Hinge Pin (71). Slide the Hinge Pin into the outside hole on the Suspension Arm, through each of the two Hub Spacers and the outside hole in the rear Hub. Secure the Hinge Pin with another 1/8" E-clip.
- ☐ 3. Repeat Steps 1 and 2 for the right rear Hub (65) assembly.
- \*Note: Read the VLA section in the back of this manual for tips on when to use the inner holes on the rear Arms and Hubs..

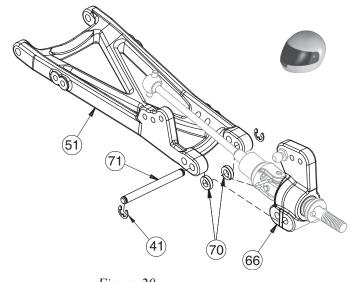



Figure 20

### Step C-4 Rear Arm & Suspension Assembly Install:



















- 1. Attach the plastic rear inner Pivot Block (49) to the rear Pivot Plate (53) with two 4-40 x 1/2" Flat Head Screws (44) with the Hinge Pin holes facing rearward. Thread the Flat Head Screws in 3-4 turns to hold the plastic rear Pivot in place.
- 2. Locate the small Anti-Squat Shims (48) (read the "Anti-Squat" section in "Tips" for when to use less of these). Place two Anti-Squat Shims between the plastic rear Pivot and the rear Pivot Plate, making sure the flat edge is towards the outside, and tighten the two Screws.

IMPORTANT NOTE: Ensure that the Anti-Squat Shims are completely under the plastic rear Pivot to provide a rigid mounting surface.

- □ 3. Attach the rear Pivot Plate to the Chassis (19) using four 4-40 x 3/8" Flat Head Screws (54). Make sure the Pivot Plate is flush with the Chassis, and the holes in the Pivot Plate and Chassis are aligned.
- 4. Slide a rear inner Hinge Pin (52) into the left rear suspension Arm (51) marked 'L' push the Hinge Pin into the left side of the plastic rear Pivot Block. Repeat for the right side.
- 5. Slide the aluminum rear Pivot (37) over the rear inner Hinge Pins with the flat side facing towards the rear of the car.
- ☐ 6. Slide the Motor Guard (111) under the aluminum rear Pivot and align the holes in the Motor Guard, rear Pivot, and rear Pivot Plate.
- 7. Apply a drop of Thread Lock (21) to two 4-40 x 3/8" Flat Head Screws and thread them through the Pivot Plate and Motor Guard, into the aluminum rear Pivot and tighten

If you notice some "slop" between the rear Arms and the Pivots, you may need to losen the Screws securing the aluminum rear Pivot and push forward on the Pivot while re-tightening the Screws.

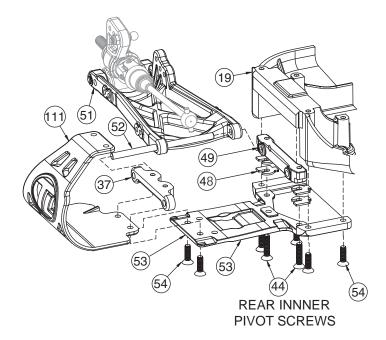
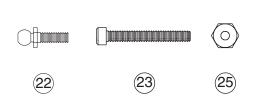




Figure 21

### **Step C-5** Rear Shock Tower Assembly:



☐ 1. Insert two 4-40 x 7/8" Cap Head Screws (23), one on each side, through the third hole (#3) out on the top of the rear Shock Tower (55) as shown in Figure 22. Secure the Screws to the Shock Tower by threading a 4-40 Nut (25) onto each Screw and tightening.

IMPORTANT NOTE: The Screws should extend from the same side of the Shock Tower as the two tabs near the center of the Shock Tower.

2. Thread a silver colored Ball Stud (22) into the inside hole (#1) on each side of the rear Shock Tower.

IMPORTANT NOTE: The Ball Stud installed in the rear Shock Tower, must be a silver colored "Short Neck" Ball Stud.

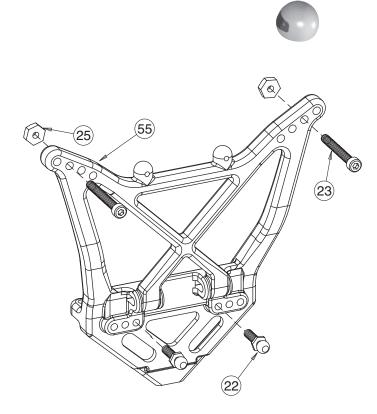
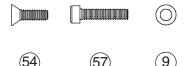




Figure 22

#### **Step C-6** Rear Shock Tower Install:



There is a short Thread-Cutting Screw included in the Wrench bag. This Screw can be used to tap threads in the holes in the Main Chassis. Pre-tapping these holes makes it easier to install the Screws during assembly.

1. Place the rear Shock Tower (55) between the rear Suspension Arms and against the rear of the Chassis (19) as shown in Figure 23. The Shock Tower should sit flat against the rear Pivot Plate (53). Place a Ball Stud Washer (9) over two 4-40 x 1/2" Cap Head Screws (57). Secure the Shock Tower to the Chassis by threading the two 4-40 x 1/2" Cap Head Screws, with Washers installed, through the tabs on the Shock Tower and into the Chassis.

☐ 2. Secure the rear Shock Tower to the rear Pivot Plate by threading a 4-40 x 3/8" Flat Head Screw (54) from the bottom side of the Chassis through the Pivot Plate, and into the Shock Tower.

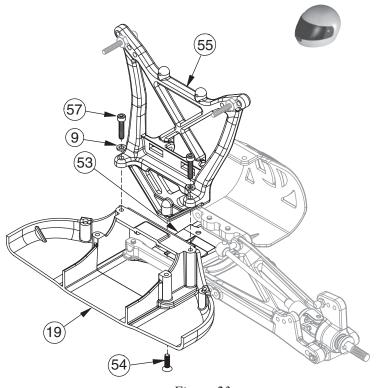
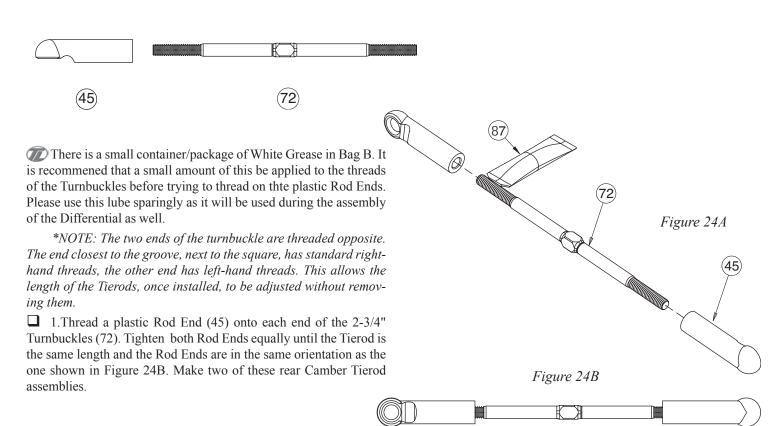




Figure 23

### **Step C-7** Rear Camber Tierod Assembly:



### **Step C-8** Rear Camber Link Install:

\*NOTE: Assure that the grooves on all of the rear Turnbuckles are located on the drivers left-hand side for easier adjustment later:

1. Place a Foam Thing (47) over the Ball Studs (22) in both the rear Hub and the rear Shock Tower.

2. Attach one end of a rear Camber Link assembly (Figure 24B) to the Ball Stud (22) in the left rear Hub (66) and the other end to the Ball Stud in the rear Shock Tower (55).

3. Repeat Step 1 for the right side of the car.

## **BAG** D

### **Step D-1** Diff Nut Assembly:









- 1. Locate the 5/64" Allen Wrench (74) supplied with the kit. Place the Diff Nut (73), over the Allen Wrench, with the ears on the Diff Nut towards the bent end of the Allen Wrench.
- 2. Place the Square Diff Spring (76) over the Allen wrench against the Diff Nut.

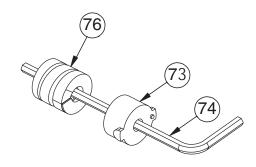



Figure 26

#### **Step D-2** Diff Nut Assembly To Outdrive:

□ 1. Insert all of the parts that are stacked on the wrench into the male Outdrive/Diff Half (77). Line up the tabs on the Diff Nut (73) with the slots in the Outdrive. Make certain that the Diff Spring (76) is seated all the way into the Outdrive/Diff Half, and that it is flat to the bottom of the pocket.

Leave the Allen Wrench in place to hold the Diff Nut in the Outdrive while continuing assembly.

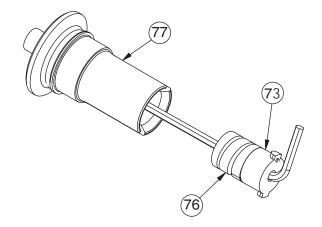
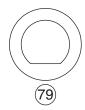




Figure 27

### **Step D-3** Diff Drive Ring To Male Outdrive:



- □ 1. Apply a small amount of Diff Grease (clear) (78) to the outside ridge of the Outdrive/Diff Half (77). Attach a Diff Ring (79) to the Outdrive by lining up the "D shape" of the Ring with the "D shape" of the Outdrive.
- \*NOTE: Only a small amount of Grease is needed. It is only used to hold the Diff Ring in place.

IMPORTANT NOTE: Do not glue the Diff Ring to the Outdrive/Diff Halves. Doing so may not allow the Rings to mount flat on the Outdrive.

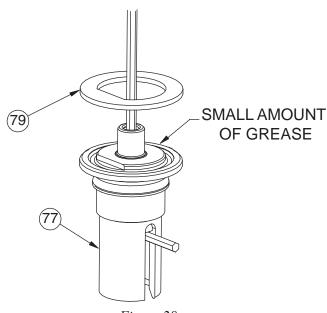



Figure 28

### Step D-4 Diff Gear:





80



- ☐ 1. Insert a 5mm x 8mm Ball Bearing (80) into the center of the Diff Gear (81).
- 2. Press a 3/32" carbide Diff Ball (82) into each of the 12 small holes in the Diff Gear. There should be a total of twelve Balls installed.
- A *clean, dry* finger can be used to smooth out and spread the Diff Grease.
- 3. Apply a small amount of Clear Diff Grease (78) to cover the Diff Balls on both sides of the Gear.

IMPORTANT NOTE: There are two sets of Balls in Bag D. Be certain to use the Balls that are packaged separatly (12 total) in Step D-4. There is a second set of eight 5/64" Balls packaged with Thrust Washers in the bag. These Balls will be used in Step D-6.

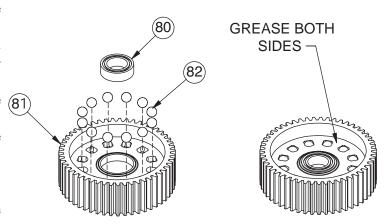



Figure 29

#### **Step D-5** Diff Gear to Male Outdrive:

□ 1. Apply a small bead of clear Diff Grease (78) to the exposed side of the Diff Ring (79). Carefully place the Diff Gear(81) over the bearing boss, so the Diff Balls (82) and Diff Gear rest flat against the Diff Ring.

IMPORTANT NOTE: It is a good idea to hold the Diff Nut in place, with the Allen Wrench, so the Diff Nut is not pushed out of the Outdrive/Diff Half.

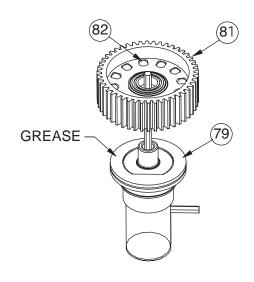
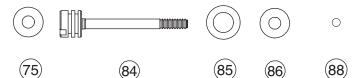




Figure 30

#### **Step D-6** Bearing Insert to Female Outdrive:



\*NOTE: Be very careful when installing the foam Thrust Bearing Seals, do not over-stretch them.

- 1. Locate the Diff Adjusting Screw (84) and carefully stretch the two blue foam Thrust Bearing Seals (85) into the groves on the head of the Diff Screw.
- 2. Place one of the Belleville Washers(75) onto the Diff Adjusting Screw with the cone pointing toward the head of the Diff Screw.
- \*NOTE: The Thrust Bearing Washers are packaged in a small bag along with the eight 5/64" Thrust Bearing Balls.
- ☐ 3. Place a Thrust Washer (86) on the Diff Screw against the Belleville Washer.
- 4. Grease the Thrust Washer well with White Thrust Bearing/Assembly Grease (87) and place the eight 5/64" Thrust Bearing Balls (88) on top of the Thrust Washer, around the Diff Screw. Apply more White Thrust Bearing/Assembly Grease to the top of the Thrust Bearing Balls.
- 5. Place another Thrust Bearing Washer over the Diff Screw and against the Thrust Bearing Balls.
- 6. Place another Belleville Washer on the Diff Screw with the cone opening towards the head of the Thrust Washer.

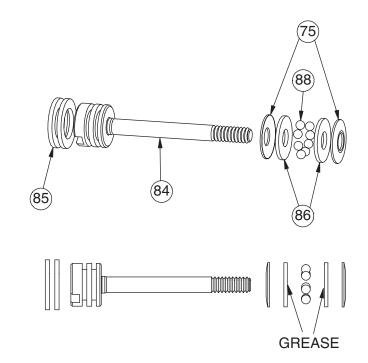



Figure 31

### **Step D-7** Diff Adjusting Screw Assembly:

☐ 1. Very carefully insert the Diff Thrust Assembly, into the female Outdrive (83). Be very careful to make sure the Thrust Balls (88) remain seated between the Thrust Washers (86) while inserting the Diff Screw. Pull the threaded end of the Diff Screw until the Thrust Bearing assembly rests against the inside of the female Outdrive.

IMPORTANT NOTE: Ensure that all eight Thrust Bearing Balls remain in place between the two Washers, around the Diff Screw.

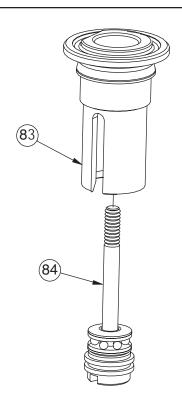
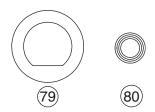




Figure 32

### **Step D-8** Diff Ring to Female Outdrive:



- 1. Insert a 5mm x 8mm Ball Bearing (80) into the center of the female Outdrive/Diff Half (83).
- ☐ 2. Place the 1/16" Allen Wrench (92) through the slot in the Outdrive/Diff Half containing the Diff Screw (84). Slide the wrench all the way against the Screw. By handling the Outdrive/Diff Half with the Wrench inserted, the Diff Screw will be held in place while the finishing assembly of the Differential.
- □ 3. Apply a small amount of Clear Diff Grease (78) to the outer ridge of the Outdrive. Install the remaining Diff Ring (79), again lining up the "D shape" of the Outdrive/Diff Half with the "D shape" of the Diff Ring. Apply a good size bead of grease to the exposed side of the Diff Ring.

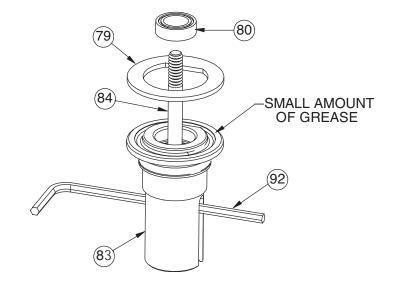



Figure 33

#### **Step D-9** Diff Assembly:

- 1. Make sure that the slot in the Diff Screw (84) is lined up with the slot in the female Outdrive/Diff Half (83) and that the Allen Wrench is inserted in the slot in the Diff Screw.
- 2. Carefully remove the Allen Wrench from Diff Nut in the male Outdrive. Insert it through the slot of the male Outdrive (same as what was done with the female Outdrive). This will hold the Diff Nut in place during assembly.
- ☐ 3. While holding the Female Outdrive/Diff Half with the Allen Wrench inserted, carefully place the two Outdrive/Diff Halves together.
- 4. Hold the Diff assembly so that the Outdrive/Diff Half with the Diff Nut (73) is pointing up. Slowly turn the Male Diff Half clockwise to thread the Diff Screw in the Diff Nut. Thread the two halves together until the Screw just starts to snug up.
- After about 4-5 turns when tightening the diff, tighten the screw a little and then "work" the diff a little, by holding the Diff Gear and Rotating the Outdrive/Diff Half. Then tighten the Diff a little more and "work" the diff again. Continue this until the Diff is tight. This will ensure proper seating of all the parts in the Diff assembly.
- 5. Tighten the Diff until the Gear (81) cannot be turned while both of the Outdrives/Diff Halves are being held. Final Diff adjustment should be made after completion of the car.

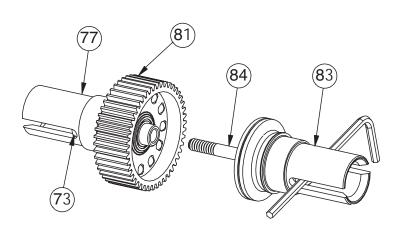
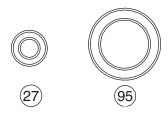




Figure 34

### **Step D-10** Bearing to Left Gearbox Half:



- ☐ 1. Insert a 3/16" x 3/8" sealed Bearing (27) into the top Bearing seat of the left Gearbox Half (94).
- 2. Insert a 1/2" x 3/4" Bearing (95) into the lower Bearing seat of the left Gearbox Half.

\*NOTE: If the 1/2" x 3/4" Bearing only has one Teflon<sup>TM</sup> seal (colored, woven looking) in it, position the seal to the outside of the Gearbox Half.

IMPORTANT NOTE: Never allow the Gearbox Halves to come into direct contact with any type of motor spray/cleaner. The material used on these parts was selected with performance in mind, and some motor sprays/cleaners may damage the parts.

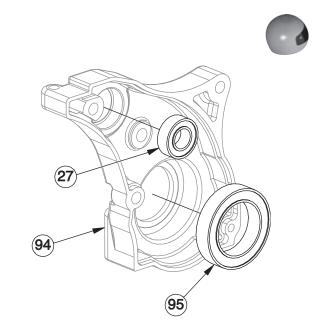
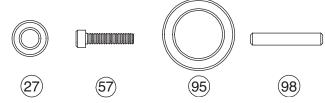




Figure 35

### **Step D-11** Motor Plate to Right Gearbox Half:



\*Note: The Motor Plate supplied in kit may look slightly different than pictured in Figure 36.

- 1. Place the Motor Plate (96) against the outside of the right Gearbox Half (97) by aligning the hole in the Motor Plate with the Top Shaft Bearing housing in the right Gearbox Half as shown in Figure 36.
- 2. Rotate the Motor Plate so that the Screw holes in the Motor Plate line up with the Screw holes in the Gearbox Half. Secure the Motor Plate to the Gearbox Half by threading a 4-40 x 1/2" Cap Head Screw (57) through the hole near the center of the Gearbox Half from the inside into the hole in the Motor Plate and tighten.
- □ 3.Insert a 3/16" x 3/8"sealed Bearing (27) into the top Bearing seat of the right Gearbox Half. Carefully push the Bearing all the way into the Bearing seat using a pencil or the handle of a hobby knife. Care should be taken not to damage the seals on the Bearing.

\*NOTE: If the 3/16" x 3/8" Sealed Bearing only has one Teflon<sup>TM</sup> seal (colored, woven looking) in it, position the seal to the outside of the gearbox half.

- 4. Insert a 1/2" x 3/4" sealed Bearing (95) into the lower bearing seat of the right Gearbox Half.
- ☐ 5. Press or lightly tap the Idler Gear Shaft (98), into the hole in the center of the right Gearbox Half.

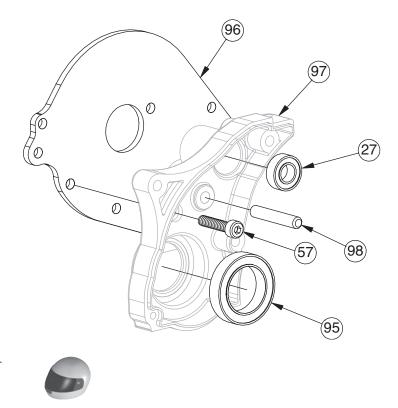



Figure 36

### **Step D-12** Right Gearbox Half Assembly:









\*NOTE: Be sure there is no flashing left on the Top Shaft Spacer before you install it into the transimssion.

- 1. Slide the Top Shaft Spacer (99) over the long side of the Top Shaft (90).
- 2. Insert the Top Shaft, threaded side first, through the Bearing (27) in the right Gearbox Half (97). Firmly press the Slipper Shaft into the Right Gearbox Half ensuring the Bearing is properly seated.
- ☐ 3. Insert a 1/8" x 3/8" Ball Bearing (100) into each side of the Idler Gear (101). Place the Idler Gear over the Idler Gear Shaft (98).

IMPORTANT NOTE: Install the Differential so that the head of the Diff Screw is on the left hand side of the car. This will make for easier adjustment later.

4. Insert the Diff Assembly into the 1/2" x 3/4" Sealed Bearing (95) into the right Gearbox Half with the Diff Nut (73) side first (Diff Nut should be on same side of Gearbox as the Motor Plate).

\*NOTE: Align the teeth on all Gears when installing the Differential.

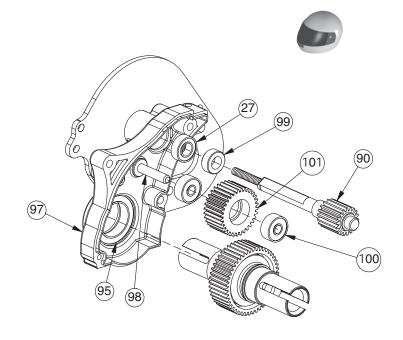



Figure 37

#### **Step D-13** Gearbox Assembly:









- ☐ 1. Carefully place the left Gearbox Half (94) over the assembled right Gearbox Half.
- 2. Thread the 2-56 x 3/8" Cap Head Screw (102) into the lower, forward hole in the Gearbox Housing from the left side.
- □ 3. Insert a 4-40 x 1" Cap Head Screw (103) into each of the two rear holes in the left Gearbox Half and thread them into the Motor Plate (96) as shown in Figure 38.

IMPORTANT NOTE: The top, forward hole in the Gearbox Halves remains open at this point. This hole will be used to attach the Gearbox to the rear Shock Tower.

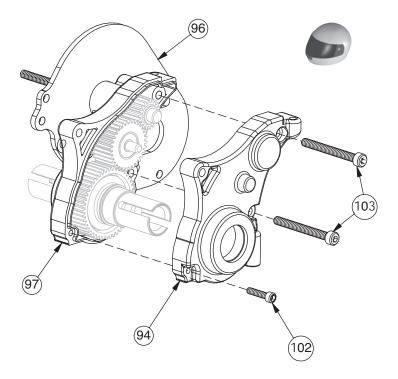
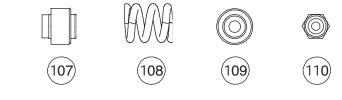




Figure 38

### **Step D-14** Slipper Clutch Assembly:



- 1. Slide the Slipper Backing Plate (104) over the Top Shaft (90), aligning the flat sections on the Top Shaft (90) with the flat sections of the Slipper Backing Plate.
- 2. Place the Slipper Pad (105) on one side of the 86 tooth Spur Gear (106) and align the notches on the Spur Gear with the notches on the Slipper Pad.
- 3. Place the Spur Gear, Pad side first, over the Top Shaft. The Slipper Pad should rest against the Slipper Backing Plate.

  \*NOTE: Ensure that the Slipper Pad remains indexed in the Spur Gear.
- 4. Install the second Slipper Pad to the exposed side of the Spur Gear. Again, align the notches on the Spur Gear with the notches on the Slipper Pad.
- 5. Place the second Slipper Backing Plate over the Top Shaft so that the large, flat surface of the Backing Plate rests against the Slipper Pad.
- ☐ 6. Place the Slipper Spacer (107), long side first, onto the Slipper Shaft and against the outer Slipper Backing Plate.
- 7. Place the silver Slipper Spring (108) over the Slipper Shaft, followed by the Slipper Spring Retaining Washer (109) and secure with the 4-40 Locknut (110).

IMPORTANT NOTE: Before tightening the Locknut, check to see that the Slipper Pads are properly aligned with the notches on both sides of the Spur Gear. If not, align them before proceeding.

8. Tighten the 4-40 Locknut all the way down, and then back it off four complete turns (360° x 4). This is a good starting point for adjustment. Final adjustment can be made later.

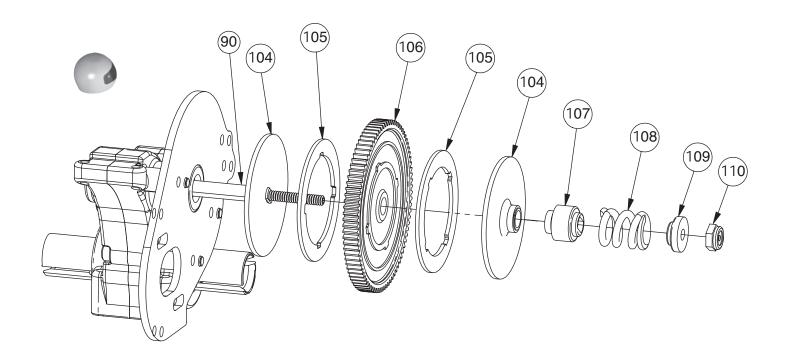
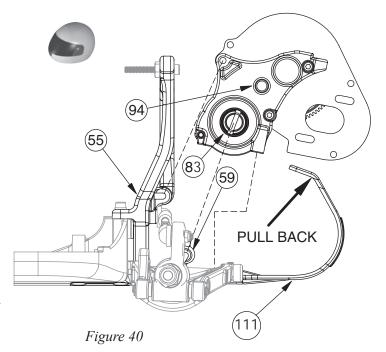




Figure 39

### **Step D-15** Gearbox Install:

- 1. Place the assembled Chassis (19) on a flat table so that the rear suspension Arms (50), (51) and Chassis are laying flat on the table. This will make installing the Gearbox a little easier.
- 2. While using one hand to pull back the Motor Guard (111), use the other to place the Gearbox assembly under the Motor Guard.
- \*NOTE: Assure that both Dogbones are inserted into the Outdrive/Diff Halves before you complete the installation.
- 3. Insert the ball portion of the each Dogbone (59) into its perspective Outdrive/Diff Half (77), (83), by aligning the pin in the Dogbone with the slot in the Outdrives.
- 4. "Work" the Gearbox down onto the rear Pivot Plate (53) while locating the upper front portion of the Gearbox Halves (94), (97) between the mounts on the back side of the rear Shock Tower (55). The Gearbox assembly should now be sitting flat on the rear Pivot Plate.
- 5. Make sure that the Motor Guard has returned to its normal position and the holes on top are lined up with the holes in the top of the Gearbox Halves.
- Although this process seems a little cumbersome, over time it has proven to be the most efficient method of installing and removing the Gearbox assembly, either for maintenance or initial installation



#### **Step D-16** Gearbox Install - Continued:





91)



(112)

1. Place a Ball Stud Washer (9) onto the 4-40 x 1-1/2" Cap Head Screw (112). Thread the Screw through the hole in the left side of the rear Shock Tower, through both Gearbox Halves and into the Motor plate (96).

\*NOTE: In order to properly align all parts, it may be necessary to push the transmission down and forward while inserting the Screw.

2. Hold the rear suspension Arms up so that the Dogbones stay in place, and turn the car over holding the Gearbox in place while doing so. Align the two holes in the rear of the Gearbox Housing with the two holes in the rear of the Pivot Plate (53).

\*NOTE: Do Not use the Thread-Cutting Screw for the installation of the Screws into the **bottom** of the Gearbox.

- $\square$  3. Apply a small amount of White Assembly Grease (87) to each of the two 4-40 x 3/8" Flat Head Screws (54). Thread the Screws through the two holes in the back of the Pivot Plate into the Gearbox Halves (94), (97).
- There is a short Thread-Cutting Screw included in the Wrench bag. This Screw can be used to tap threads in the holes in the Gearbox Halves. Pre-tapping these holes makes it easier to install the Screws during assembly.
- $\Box$  4. Secure the top of the Motor Guard to the top of the Gearbox by threading a 4-40 x 5/16" Button Head Screw (91) through each of the two holes in the Motor Guard and into the top of the Gearbox Halves (94), (97).

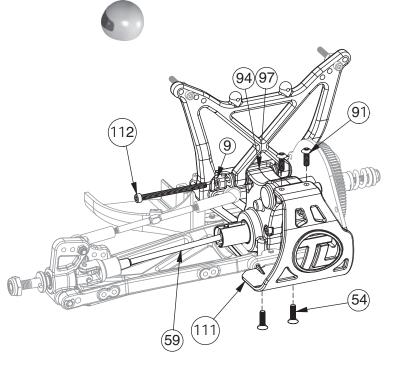
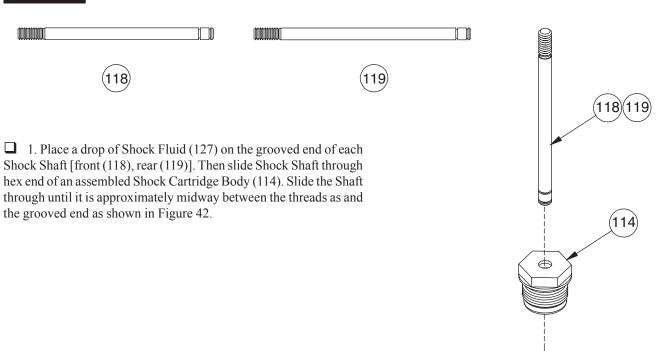




Figure 41



### **Step E-1** Shock Shaft Install:



#### **Step E-2 Shock End Install:**





- 1. Carefully snap a 1/4" aluminum Shock Mount Ball (122) into each of the Shock Ends on each of the Shafts.
- □ 2. Using needle-nose pliers, or small vise grips, grasp the front Shock Shaft (118) between the grooves and thread a Shock End (120) onto the Shock Shaft. Thread the Shock End all the way onto the Shaft until the threads stop.

IMPORTANT NOTE: Use caution when threading the Shock Ends onto the Shafts. Avoid gouging or scratching the Shock Shaft while gripping Shock Shaft with the pliers. By placing a towel over the shaft, then gripping the portion of the Shaft covered by the towel. This will work very well to protect the Shock Shaft.

☐ 3. Repeat Step 1 and 2 for the second front Shaft and two rear Shafts.

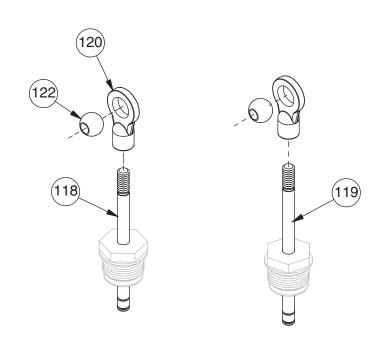
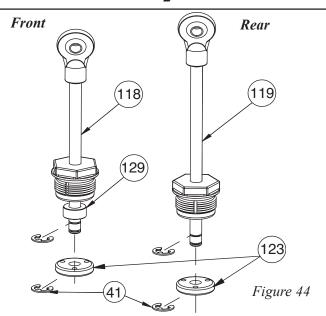



Figure 42


Figure 43

#### **Step E-3 Shock Piston Install:**





- 1. Place a "A" Spacer (129) over each of the front Shock Shafts and move them up against the Shock Cartridges.
- ☐ 2. Snap a 1/8" E-clip (41) into the groove closest to the Cartridge on all four shafts (capturing the Spacers on the front Shock Shafts).
- ☐ 3. Slide a #56 (Red) Shock Piston (123) over the end of each Shaft until it rests against the E-clip. Secure the Pistons to the Shafts with another 1/8" E-clip placed in the groove now exposed on the top of the Shaft.



#### **Step E-4** Filling the Shocks with Fluid:

- 1. Match the short, front Shock Bodies (125) to the short, front Shock Shafts (118), and the long, rear Shock Bodies (126) to the long, rear Shock Shafts (119).
- 2. Fill the Shock Bodies with 30wt.Shock Fluid (127) up to the bottom of the threads inside the Shock Body.
- \*NOTE: Be sure to match the front Shock Shafts with the front Shock Bodies.
- 3. Insert the shaft assembly with the Cartridge against either the Shock Piston (123) (rear) or Shock Spacer (front). Slowly tighten the Cartridge about two full turns only. With the Cartridge still slightly loose, slowly push the Shock Shaft down into the Shock Body. This will bleed the excess fluid out of the Shock. Once the Shock Shaft is all the way in, tighten the Shock Cartridge the rest of the way.
- 4. Now, with the Shock Shaft still all the way in, secure the Cartridge by tightening it with pliers or a 7/16" Wrench approximately 1/8 of a turn. There should be no air in the Shocks as you push the Shaft in and out. If there is, the Shock needs more Fluid. If the Shock Shaft does not compress all the way, the Shock has too much Fluid in it and more must be blead out by loosening the cartridge aproximately 1/4 turn and re-tightening (Shaft should be compressed during this process).

\*NOTE: If leaking persists around the outside, tighten the cartridge more. Be careful not to over tighten and strip the threads on the Cartridge Body.

□ 5. Repeat Steps 2-4 for the remaining three Shocks.

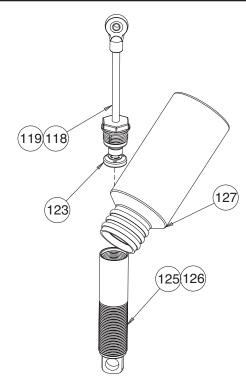



Figure 45

#### **Step E-5** Shock Adjustment Nut Assembly:

\*Note: This step will only be used for maintenance purposes. These come pre-assembled in the kit.

\*NOTE: Place a drop of Shock Fluid onto each O-ring before installing it into the Shock Adjusting Nut. This will allow the Nut to thread onto the Shock Body easily.

1. Place the O-ring (138) into the grove inside of the Shock Adjusting Nut (130), Be sure to seat the O-ring completely into the groove as shown in Figure 46B.

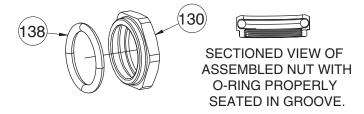



Figure 46A

Figure 46B

#### **Step E-6** Spring Install:

- 1. Snap a Shock Spring Cup (128) with the small side down, onto each of the four Shock Shafts (118), (119) and over the Shock End (120).
- 2. Slide a Red Shock Spring (131) over all of the Shocks so that the Spring rests on the Spring Cups.
- □ 3. Thread a Shock Spring Adjustment Nut (130), small side down, on to the top of all four Shock Bodies (125), (126). Thread the Spring Adjustment Nuts on to the Shocks until the Adjusting Nut just touches the Spring.

\*NOTE: Final ride height adjustment should be made once the car is fully built and all radio gear and electrics are installed. Refer to the setup tips provided in the back of this manual for final ride height adjustment.

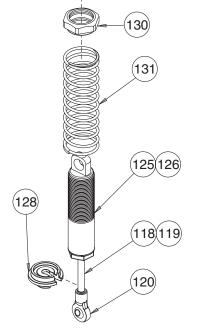
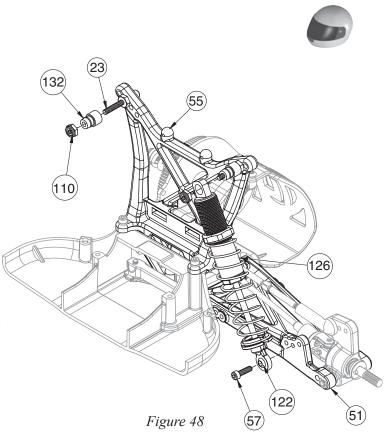



Figure 47

#### **Step E-7** Rear Shock Install:










- 1.Position your car so that the Shock mounting holes in the front of the Arms are accessible. Make sure that the Dogbones (59) stay in the Outdrives/ Diff halves (77)(83).
- ☐ 2. Insert a 4-40 x 1/2" Cap Head Screw (57) through the Shock Mount Ball in one of the rear Shocks. Position the bottom of the Shock, with the Screw, in front of the Shock mounting area on the left rear suspension Arm (51). Thread the Screw all the way into the middle mounting hole in the rear Arm.
- ☐ 4. Slide a short Shock Mount Bushing (132), large side first, over the Shock mounting Screw (23) in the top left side of the rear Shock Tower (55).
- □ 5. Place the top of the Shock Body (126) over the Shock Mount Bushing. Secure the Shock and Bushing to the Shock Tower by threading a 4-40 Locknut (110) onto the Shock Mount Screw.

\*NOTE: Before attaching the top of the Shock, make sure that the Dogbones are in place in the Outdrives.

☐ 6. Repeat Steps 2-5 for the right rear Shock.



#### **Step E-8** Front Shock Install:







- 1. Insert the Shock End (120) of a front Shock into the Shock mounting area of the left front suspension Arm (38) and line up the hole in the Shock Mount Ball (122) with the middle hole in the Arm.
- 2. Secure the Shock to the front Arm by threading a 4-40 x 1/2" Cap Head Screw (57) all the way into the Arm from the back side.
- 3. Slide a long Shock Mount Bushing (133), large side first, over the Shock mounting Screw (23) on the left side of the front Shock Tower (24).
- 4. Place the top of the Shock Body (125) over the Shock Mount Bushing on the front Shock Tower. Secure the Shock and Bushing to the Shock Tower by threading a 4-40 Locknut (110) onto the Shock mount Screw.
- 5. Repeat Steps 1-4 for the right front Shock.

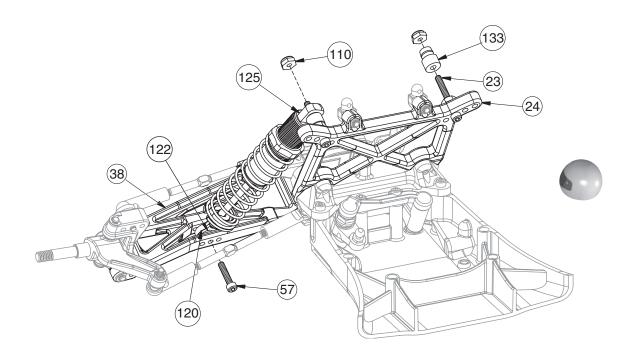



Figure 49

## **BAG** F

#### **Step F-1** Motor and Gear Cover Install:



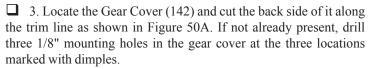











1. Attach the motor *(not included)* to the Motor Plate (96) using two 3mm x 8mm Button Head Screws (141) and two #4 Washers (58). Do not tighten the Screws yet.

\*NOTE: There are usually four mounting holes on a motor can. To install the motor, you must use two holes which are not vertical with each other as shown in Figure 50B. Choose the set of holes that will allow easiest access to the solder tabs on the motor.

☐ 2. Attach the pinion gear *(not included)* to the motor shaft by aligning the set screw in the pinion with the flat side on the motor shaft and tightening. Adjust gear mesh so that there is a little "backlash" between the Gears, and tighten the Motor Screws one at a time, checking the mesh between the tightening of each Screw.

\*NOTE: The gears need some backlash in order to function properly. Too much though will cause failure, so be sure to check the Gear mesh at different points in the rotation of the Spur Gear.

\*NOTE: Some of the Gear Covers may come pre trimmed from the factory, with mounting holes already in place.







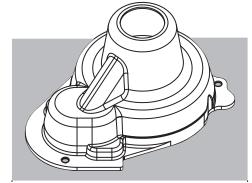
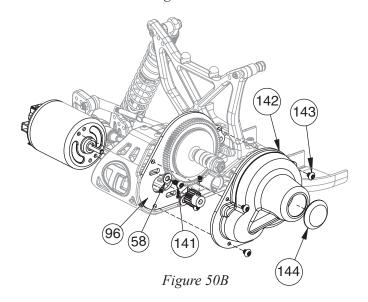




Figure 50A

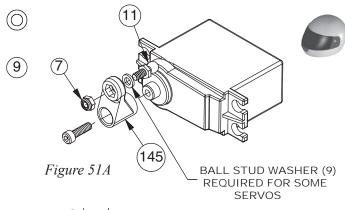


### Step F-2 Servo Assembly:










1. Using Table 52B (on the following page), determine which Servo Arm (145) (found on the Steering tree, previously used in Bag A) is required for your Servo. If your particular Servo is not listed, try using the Arm recommended for another Servo made by the same manufacturer.

Some Servos may require the use of a Ball Stud Washer (9) placed behind the Ball Stud (11) for proper Servo Link alignment, as shown in Figure 51A.

2. Insert a 4-40 Mini-Locknut (7) into the hex area on the back side of the Servo Arm. Thread a 3/16" Ball Stud (11) through the hole in the Servo Arm, into the Locknut, and tighten.

□ 3. Plug the Servo into the radio system's receiver (not included). Make sure that there is power to the Receiver, and turn the transmitter on followed by the Receiver. Be sure that the trim settings for the steering on your transmitter are set to the center. With the radio system still turned on, attach the Servo Arm to the output shaft so that the Arm is one spline off center in the direction shown in Figure 51B. Secure the Servo Arm using the screw supplied with the Servo.



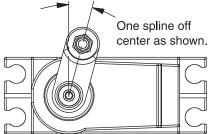



Figure 51B

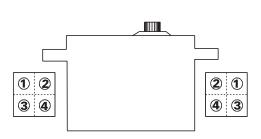



Figure 52

| Position of pin on servo mount post |                         |  |  |
|-------------------------------------|-------------------------|--|--|
| 1                                   | Forward away from servo |  |  |
| 2                                   | Forward next to servo   |  |  |
| 3                                   | To rear away from servo |  |  |
| 4                                   | To rear next to servo   |  |  |

Table 52A

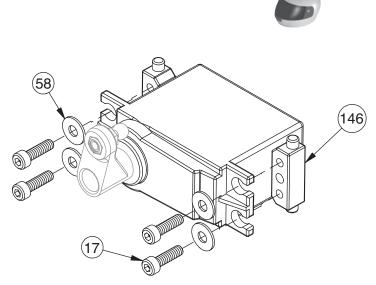
| SERVO TYPE                                                                                      | MOUNTING POST<br>PIN LOCATION | REQUIRED<br>SERVO ARM | STEERING LINK<br>LENGTH |  |
|-------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|-------------------------|--|
| AIRTRONICS<br>All                                                                               | 4                             | 23                    | 55B                     |  |
| Futaba<br>S131, S131SH, S148, S3001, S5101,<br>S9101,S9201, S9301, S9401, S9403                 | 2                             | 25                    | 55B                     |  |
| <b>Futaba</b><br>S3401, S9402, S9404, S9450                                                     | 3                             | 25                    | 55B                     |  |
| Futaba<br>S9303                                                                                 | 4**                           | 25                    | 55B                     |  |
| <b>HiTech</b><br>HS-605, HS-615, HS-925, HS-945                                                 | 3**                           | 24                    | 55C                     |  |
| <b>HiTech</b><br>All other's                                                                    | 1                             | 24                    | 55C                     |  |
| JR NES-507, NES-513, NES-517, NES-901, NES-4000, NES-4131, NES-4721, NES-4735, NES-9021,DS-8231 | 1                             | 23                    | 55B                     |  |
| <b>KO</b><br>PS-702, PS-703, PS-1001, PS-1003                                                   | 2                             | 23                    | 55B                     |  |
| <b>KO</b><br>PS-901BH, PS-902                                                                   | 1                             | 23                    | 55B                     |  |
| Multiplex<br>All                                                                                | 3                             | 23                    | 55B                     |  |
| ** Use 1 Ball Stud washer on the ball stud when attaching it to the servo arm.                  |                               |                       |                         |  |

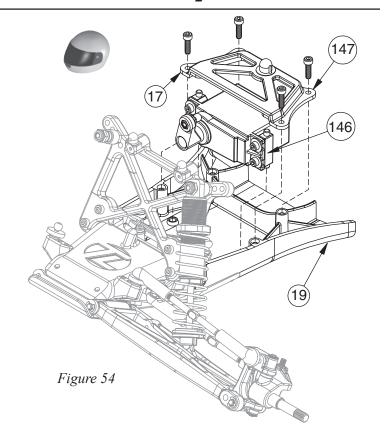
Table 52B

#### **Step F-3** Servo Mounting Post Install:



- 1. Use Tables 52A and 52B to determine how the Servo Mounting Posts (146) should be attached to the Servo (not included).
- Trim any flashing from the pins on the Mounting Posts so that they will seat all the way into the holes in the Chassis and Chassis Brace.
- □ 2. Place a #4 Washer (58) over each of the four 4-40 x 3/8" Cap Head Screws (17) and attach the Servo Posts to the Servo by threading a Screw through the upper and lower holes in each Post. **Do not tighten the Screws yet!** Just snug them up so that the Posts are held in place, but can still be moved from side to side with a little resistance. The Screws will be tightened at a later step so that the Posts have the correct spacing.





Figure 53

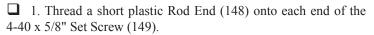
### **Step F-4** Servo Mounting:

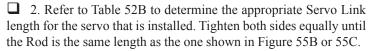


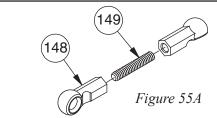


- 1. Install the Servo into the Chassis (19) as shown in Figure 54. Insert the pin on the left Servo Mounting Post (146) into the hole in the Chassis. Move the Servo and Posts slightly until both the left and right Posts are inserted in the holes in the Chassis.
- 2. Place the Chassis Brace (147) on top of the Servo. The pins from both Servo Mounting Posts should line up with the holes on the bottom of the Chassis Brace. If they do not, move the Posts slightly until the pins fit into the holes.
- \*NOTE: The Servo should be as close to centered between the two Posts as possible
- ☐ 3. Remove both the Servo and the Chassis Brace from the car. While holding the Brace in place, tighten the top two Screws, followed by the bottom two Screws. Holding the Brace in place will help keep the Posts from moving while tightening the Screws.
- 4. Reinstall the Servo and Brace to the Chassis. Ensure that the pins on both sides of the Servo Posts are in their respective holes, and secure the Brace to the Chassis with four 4-40 x 3/8" Cap Head Screws (17).




#### Step F-5 Servo Link:



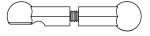


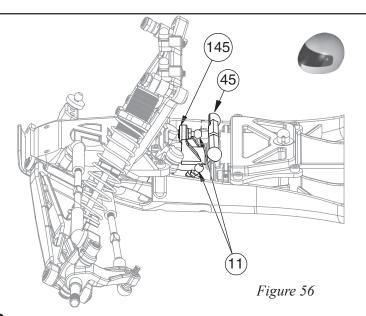










Figure 55B

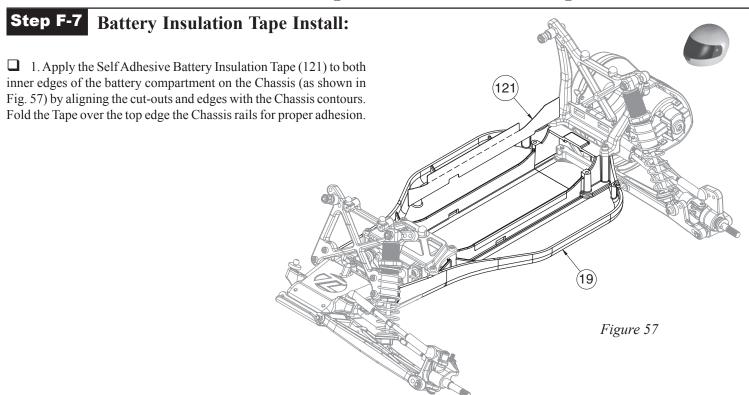
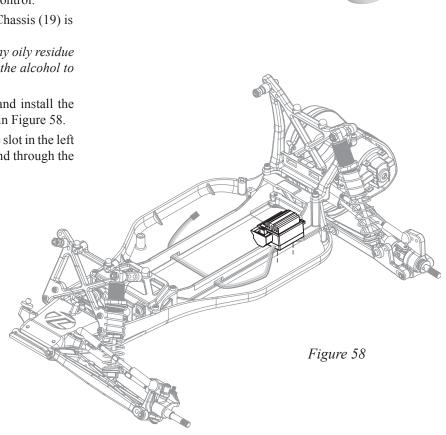



Figure 55C

#### **Step F-6** Servo Link Install:

☐ 1. Attach one end of the Servo Link to the Ball Stud (11) in the Servo Arm (145) and the other to the Ball Stud in the Servo Saver as shown in Figure 56.






### **Step F-8** Speed Control Install:

- 1. Cut a piece of Two Sided Tape (156) to the same size as the bottom of the speed control (*not included*). Peel one side of the backing off and stick the Tape to the bottom of the speed control.
- 2. Make sure that the area on the left side of the Chassis (19) is clean. Wipe this area off with a clean cloth or rag.

\*NOTE: Rubbing alcohol can be used to clean any oily residue that may be present on the chassis or receiver. Allow the alcohol to dry before applying the two-sided Tape.

- □ 3. Peel the backing off of the Two Sided Tape and install the speed control to the left side of the Chassis as shown in Figure 58.
- 4. Run the wire from the speed control through the slot in the left rail on the Chassis, across the center of the Chassis, and through the slot in the right rail of the Chassis.



#### **Step F-9** Receiver Install:

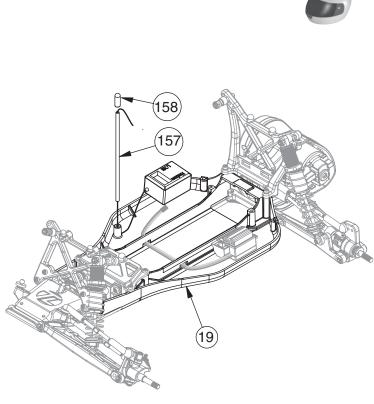
- 1. Cut a piece of Two Sided Tape (156) to the same size as the bottom of the receiver *(not included)*. Peel one side of the backing off and stick the Tape to the bottom of the receiver.
- 2. Make sure that the area on the right side of the Chassis (19) is clean. Wipe this area off with a clean cloth or rag.

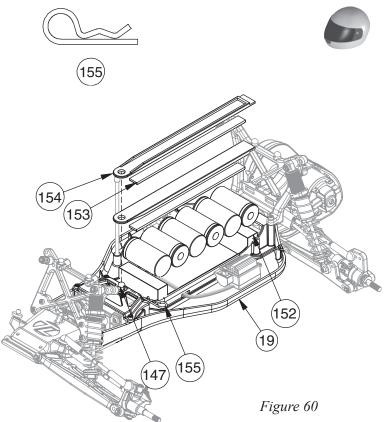
\*NOTE: Rubbing alcohol can be used to clean any oily residue that may be present on the Chassis or receiver. Allow the alcohol to dry before applying the Two Sided Tape.

- 3. Peel the backing off of the Two Sided Tape and install the receiver to the right side of the Chassis with the antenna wire exiting the receiver towards the front of the car as shown in Figure 59.
- 4. Run the antenna wire forward to the Antenna Post on the Chassis. Run the wire into the small hole in the bottom of the Antenna Mounting Post, and up through the top of the Post.
- □ 5. Slide the antenna wire through the Antenna Tube (157) (a small drop of oil in the tube will make this easier) so that the wire comes out the other end of the tube.

\*NOTE: If antenna wire is shorter than the Tube, **remove the Tube** and cut off enough of the Tube so that the wire will extend about 3/4" past the end of the Tube.

- ☐ 6. While pulling the wire through the Antenna Tube, slide the Antenna Tube down and push it firmly into the Antenna Mounting Post on the main Chassis.
- 7. Fold the wire down over the Antenna Tube and place the Antenna Cap (158) over the tube and excess wire.
- 8. Plug the speed control wire into the channel 2 slot on the receiver, then plug the wire from the servo into the channel 1 slot.





Figure 59

#### **Step F-10** Battery Install:

☐ 1.Place two Battery Spacing Foam (152) pieces into the recessed area in the center of the Chassis (19). One foam should be positioned back against the rear Shock Tower (55), and the other forward against the Chassis Brace (147)


IMPORTANT NOTE: The Battery Strap can be mounted in one of two ways. The different offset will accommodate different styles of batteries. If you will be running matched-type cells, or individual cells laid out side-by-side, the Foam Strip should be attached on the side with ribs. The foam should be positioned between these ribs. If, however, you are using a pre-assembled stick pack, the foam strip should be attached to the side of the strap opposite the ribs.

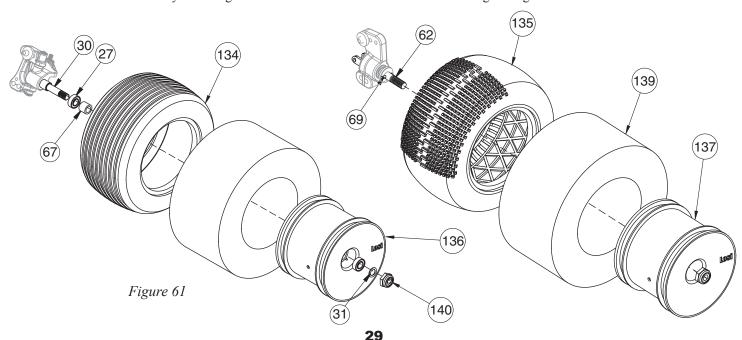
- 2. Remove the Backing Tape from the Battery Strap Foam Strip (153) and attach it to the bottom side of the Battery Hold Down Strap (154).
- 3. Once the battery pack (not included) is installed, the Battery Strap (154) will hold the batteries in place. The Battery Strap fits under the rear "bridge" of the Chassis, between the two ribs on the bottom, and fits over the post on the front Chassis Brace (147). The strap is secured to the post with a Body Clip (155).



## **BAG** G

### **Step G-1** Tire Mounting and Install:




1. Inspect the inside of the Tires [front (134), rear (135)] for any excess material. If present, trim excess rubber to ensure proper seating of the Tire bead on the Wheel [front (136), rear (137)]. During Tire assembly, make sure that all lettering on the sidewall of the front Tires faces to the outside of the Wheel. On the rear Tires, there is a directional arrow, please ensure that this arrow is pointing the same direction (with reference to car from each side) since these tires are directional

\*NOTE: Do not set Tires on furniture as they may leave permanent stains.

- It is recommended that you dampen a corner of a cloth with some rubbing alcohol and use it to clean off any residue from the bead of the Tire to ensure a clean gluing surface. Be sure to let the alcohol on the Tire dry before inserting the Foam Insert into the Tire.
- 2. Insert a Foam Liner (139) into the two front Tires. Pull the front Tires over the front Wheels and squeeze the Tires to properly seat the bead into the grooves of the Wheels. Make certain that the Foam Liners are not pinched between the Tires and the Wheels.
- 3. Insert a Foam Tire Liner into the two rear Tires. Pull the rear Tires over the rear Wheels and squeeze the Tires to properly seat the bead into the grooves of the Wheels. Make certain that the Foam Liners are not pinched between the Tires and the Wheels.
- Team Losi Tire Glue (A-7880 "Thick", A-7881 "Thin") is the best Glue available for gluing R/C car Tires. This Glue was produced specifically for this purpose. The Team Losi (A-7884) off-road Tire Gluing kit is also available to get the job done right. It includes a bottle of glue, an applicator tube, and a ten rubber bands. The rubber bands will be used to properly seat and hold the Tire bead into the Wheel while gluing.

## IMPORTANT NOTE: Allow the Glue to dry thoroughly before continuing. Read and follow adhesive manufacturers' safety warnings regarding use.

- 4. The tires now need to be glued to the wheels. This can be done by using a fast-curing super glue or cyanoacrylate glue, available at your local hobby shop. Install a Tire gluing rubber band around the outside of the Tire, in line with the bead to hold it onto the Wheel. Now slightly pull back the tire bead from the Wheel and apply a thin bead of glue between the Tire bead and the Wheel all the way around, wait for this side to dry and do the same to the other side until the Tire is firmly adhered to the Wheel. Allow the glue to dry thoroughly before continuing.
- 5. Install a 3/16" x 3/8" Bearing (27) into the backside of the front Wheel (Teflon seal facing out). Insert a Bearing Spacer (67) into the Wheel from the front side. Capture the Spacer with a second Bearing (Teflon seal facing out as well).
- 6. Install the front Wheels by sliding the front Wheel with Bearings over the front Axle (30) as shown in Figure 61. Place a 3/16" x 3/8" x 0.015" Shim (31) over the Axle against the outside Bearing. Secure the Wheel by threading a 10-32 Locknut (140) onto the Axle and Tightening.
- 7. Mount the rear Wheels to the rear Axles (62) by lining up the Roll Pin (69) in the rear Axle with the groove in the rear Wheel and pushing the Wheel all the way onto the Axle, making sure the Roll Pin is lined up with the slot on the Wheel.
- 8. Secure the rear Wheels by threading the 10-32 Locknuts on to the Rear Axles and tightening.



#### **Painting the Body and Wing**

#### **BODY AND WING PAINTING**

Prepare the Lexan Body and Wing for painting by washing them thoroughly (inside and out) with warm water and liquid detergent. Dry both the Body and Wing with a clean, soft cloth. Use the Window Masks (161) supplied to cover the windows from the inside. A high-quality masking tape should be used on the inside of the Body to mask off any stripes, panels, or designs that you wish to paint on the Body or Wing. Use acrylic lacquer, acrylic enamel, or any other paints recommended for Lexan (polycarbonate). Apply paint to the inside of the Body and to the side of the wing shown in Figure 63A. Remove the tape for the next color and continue. Try to use darker colors first. If you use a dark color after a light color, apply a coat of white over the lighter color before applying the darker color. This will help prevent the darker color from bleeding through the lighter color.

#### **STICKERS**

Apply the stickers after the mounting of the Body and Wing is complete. Cut the stickers from the Sticker Sheet (162) that you wish to apply to the Body or Wing. Before removing the protective backing, find the desired location. Remove the backing completely and reattach an edge of the sticker to the shiny side of the backing material. Using the rest of the backing material as a handle, position the sticker and press firmly into place to complete its application.

#### Step G-2 **Body Trim and Install:**

- 1. After Painting, trim the Body (159) along the trim lines (as shown in Figure 62, emphasized by the dark shading), there is an indented trim line around the body which can be used as a guide for trimming.
- 2. Make five 1/4"-diameter holes at the locations marked with dimples. There are two on the front hood, two on the back bed, and one on the roof. These will be the body mounting and Antenna Tube holes.

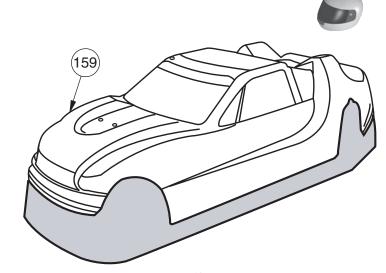



Figure 62

#### Step G-3 **Rear Wing Install:**



- 1. Trim the rear Spoiler (160) along the trim lines as shown in Figure 63A.
- 2. Cut a piece of Two Sided Tape (156) approximately 3/8" wide.
- 3. Apply the Two Sided Tape along the bottom, on the back side of the rear Spoiler. Remove the backing from the Tape and affix the Spoiler to the Rear of the Body (159) as shown in Figure 63B.
- 4. Install the assembled Body onto the Chassis and secure it with four Body Clips (155) through the posts on the rear Shock Tower (55), and through the Body Mounts (151) on the front Shock Tower.

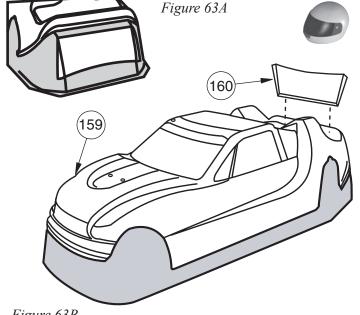



Figure 63B

## FINAL CHECKLIST

**<u>BEFORE RUNNING YOUR NEW XXX-T MF2</u>** for the first time, you should run down the following checklist in order and complete the listed tasks. I'm sure you're anxious to get out and run your new *XXX-T MF2* now that it's built, but following this simple checklist will help to make your first run with your new car much more enjoyable.

#### 1. Adjust the differential

See: About The Differential, in the tips section.

#### 2. Adjust the slipper

See: Adjusting The Slipper, in the tips section.

#### 3. Check for free suspension movement

All suspension arms should move freely. Any binds will cause the car to handle poorly. The steering should also operate very freely.

#### 4. Set the ride height

You should start with the rear ride height where the truck comes to a rest at a height where the dogbones are slightly below level with the surface. The front ride height should be set so that the bottom of the chassis is level with the surface.

#### 5. Adjust the camber

Both front and rear tires should have 1/2 degree of negative camber (top of the tire leans in). It is critical that both front and both rear tires be adjusted the same. With either end of the car closest to you, use your assembly wrench to adjust the tierods. Turn the top of the wrench towards the center of the car to shorten the tierods, and the opposite direction to lengthen them.

#### 6. Set the front toe-in

Adjust the front tie rods so that, when the steering is straight on the transmitter, the front tires are both pointing straight. It is recommended that you start with the front toe-in set to zero (no toe-in or toe-out).

#### 7. Charge a battery pack

Charge a battery pack as per battery manufacturer's and/ or charger manufacturer's instructions so that radio adjustments can be made.

#### 8. Adjust the speed control

Following the manufacturer's instructions, adjust your speed control, and set the throttle trim on your transmitter so the the car does not creep forward when not applying throttle. Make sure that there is not too much brake being applied when the trigger/stick is in the neutral position.

#### 9. Set transmitter steering trim

The steering trim tab on the transmitter should be adjusted so that the car rolls straight when you are not touching the steering wheel/stick. If the servo was installed correctly, as per Tables 52A and 52B, the wheels should turn equally to the left and right. If this is not the case, refer to Figure 55 A,B,C, and ensure that the steering servo and rod were properly installed.

## TIPS AND HINTS FROM THE TEAM

**About The Differential** Never allow the diff to slip; that's what the slipper is for. Before trying to adjust your diff, you need to tighten the slipper until the spring is fully compressed. Next, hold the spur gear and right rear tire, then try turning the left rear tire forward or backwards. It should be **very** difficult to turn the left rear tire. If the tire turns easily, the diff is too loose. To tighten the diff, line up the slot in the diff screw with the groove in the left outdrive. Place the 1/16" Allen wrench through both of these slots. This will lock the diff screw and the outdrive together. While holding the Allen wrench in place, turn the right rear tire forward about 1/8 of a turn. Check the differential adjustment again and repeat the tightening process as necessary until the differential is no longer slipping. See "**Adjusting the Slipper**" on the following page, and then continue from here. The final differential adjustment check should be made by placing the car on carpet, grass, or asphalt and punching the throttle. The differential should not slip (slipping produces a "barking" sound). If it does, tighten the diff in 1/8-turn increments as described above until the slippage stops.

Once the diff has been adjusted, it should still operate freely and feel smooth. If the diff screw starts to get tight before the diff is close to being adjusted properly, the diff should be disassembled and inspected; you may have a problem with the differential assembly. Refer to the assembly instructions to ensure that the diff is properly assembled and that all parts are properly seated in the assembly.

There are a few things you should know about differentials. First, when rebuilding your diff, you should always replace the small, diff nut. Second, after the diff has been run a time or two, it is not uncommon for the balls to seat into the rings and create a slightly loose adjustment. So, after your first and second runs, check the adjustment to avoid slippage. Third, remember: Never let the diff slip. Doing so can damage the diff balls, rings, and gear. Always make sure that the slipper will slip before the diff.

Adjusting the Slipper should be done after the diff is properly adjusted. If you have just finished adjusting the differential, loosen the slipper adjustment nut four full turns (e.g., 360 degrees x 4) to return the adjustment to the setting originally described in the assembly instructions. To make the final adjustments, place your truck on the racing surface and give the truck full throttle. The slipper should slip for one or two feet. If the slipper slips for more than two feet, you'll need to tighten the adjustment nut. If the slipper doesn't slip for at least one foot, back off the adjustment nut 1/8 of a turn and retry. If you can't hear the slipper when you punch the throttle, hold the front of the truck with the rear wheels still on the track and give the truck full throttle. The truck should push against your hand with reasonable force and the slipper only slipping slightly. Don't expect the slipper to make up for poor driving or set-up. You still have to use the throttle and maintain the shocks and chassis. The slipper will help you drive more comfortably and help accelerate of corners and land jumps.

The Most Sensitive Adjustments, and the most used by the Team Losi race team, are the number of washers under the front camber link ball studs and the anti-squat. See these two sections and try to familiarize yourself with the way that these adjustments affect the handling of the *XXX-T MF2*.

**Ride Height** is an adjustment that affects the way your truck jumps, turns, and goes through bumps. To check the ride height, drop one end (front or rear) of the truck from about a 5-6 inch height onto a flat surface. Once the car settles in to a position, check the height of that end of the car in relationship to the surface. To raise the ride height, lower the shock adjuster nuts on the shocks evenly on the end (front or rear) of the truck you are working on. To lower the ride height, raise the shock adjuster nuts. Both left and right nuts should be adjusted evenly.

You should start with the rear ride height where the truck comes to a rest at a height where the dogbones are slightly below level with the surface. The front ride height should be set so that the bottom of the chassis is level with the surface. Occasionally, you may want to raise the front ride height to get a little quicker steering reaction, but be careful as this can also make the car flip over more easily. Every driver likes a little different feel so you should try small ride height adjustments to obtain the feel you like. We have found that ride height is really a minor adjustment. This should be one of the last adjustments after everything else has been dialed in. Do not use ride height adjustment as a substitute for a spring rate. If your truck needs a softer or firmer spring, change the spring. Do not think that simply moving the shock nuts will change the stiffness of the spring; it will not!

**Rear Hub Camber Location** is best set according to the settings described in this manual. You should start with the inner hole in the top of the hub (hole "A"). As you move out on the hub, it will tend to make the truck feel a bit stiffer. This results in the truck accelerating straighter and also makes it a bit easier to line up for jumps. Running the inner hole will typically make the truck go through bumps better. The inner hole may also give the feeling of more steering. This steering generally comes from the rear end though. What this means is that the rear end of the truck may swing a bit more — at times even sliding more.

**Rear Camber Link Length** can be another useful adjustment. It is virtually impossible to make a blanket statement for exactly how the length of the camber link will affect the handling under all conditions. The following is our experience with how the length of the camber link will typically affect the handling of the *XXX-T MF2*. A longer rear camber link will usually result in more rear traction. With a longer link, the truck can start to drive more square, or point-to-point. This can make it difficult to carve corners at high speed. A shorter rear camber link will generally result in more steering from the rear of the car due to increased chassis roll. This can make it easier to change directions quicker, but can cause the rear of the truck to roll around if the link is too short. A shorter rear link will usually go through bumps a bit better than a long link as well.

**Front Carrier Camber Location** is another adjustment that is almost always run in the middle location. This location keeps the truck flatter with less roll. The outside location also helps the truck stay tighter in turns with a more precise steering feel. Moving the link to the inner hole will make the steering react slightly slower. The advantage to the inner hole is that it can increase on-power steering and help the truck get through bumps better.

**Washers Under the Front Camber Link Ball Stud** can be added or removed. This is one of the most important adjustments on the *XXX-T MF2* Truck. You should get a feel for how the number of washers affects the handling. Adding washers will make the truck more stable and keep the front end flatter. Removing washers will make the steering more aggressive. This can be good in some conditions, but can also make the truck difficult to drive in others. The best all-around adjustment is with two washers as per the assembly instructions.

**Front Camber Link Length** is another adjustment that is difficult to make a generic statement for as it can have slightly different results on various conditions. The following is a summary of how this adjustment will usually impact the handling of the *XXX-T MF2*. A longer front camber link will usually make the truck feel stiffer. This will help keep the truck flatter with less roll, but can make the truck handle worse in bumpy conditions. A shorter front camber link will result in more front end roll. This

will increase high-speed steering and make the truck better in bumps. Too short of a front link may make the truck feel twitchy or "wandery" meaning that it may be difficult to drive straight at high speed.

**Front Shock Location** can be adjusted easily by simply moving top of the shock to another hole in the shock tower. The standard location (second hole out in the tower) works best on most tracks. Moving the top of the shock out one hole will result in an increase in steering and the truck will react quicker. Moving the top of the shock to the inside hole in the tower will slow the steering response time and make the truck smoother in bumps.

The bottom of the shock can also be moved in or out on the suspension arm. Moving the bottom of the shocks to the inside hole in the arm will result in more low-speed steering and less high-speed steering. Mounting the shocks in the inside hole will require limiters in the shocks to limit the travel, and the springs should be changed to stiffer ones. Moving the bottom of the shocks to the outside hole will reduce overall travel, increase high-speed steering, and reduce low-speed steering. This position may be good for oval tracks and high-traction surfaces.

**Rear Shock Location** can be changed just as easily as the front. Again, the standard location is the best place to start for most tracks. Moving the top of the shock in on the shock tower results in less side-bite (traction in corners) but makes the truck smoother in bumps. Sometimes a stiffer spring is used in combination with the inside holes inthe tower. Moving the top of the shocks to the outside hole will give the truck more forward traction and side bite as well as keeping the truck from bottoming out on big jumps. A softer spring should be used if the shocks are mounted in the outer hole in the tower.

Moving the bottom of the rear shocks to the outside hole in the arm will improve stability but may not handle bumps as well. You may also notice that the truck is faster in the turns. The downside is that the truck will not straighten out or "square up" as well. Moving the shocks to the inside hole will increase forward traction and be more stable in bumps. At times a stiffer spring or a sway bar (LOSA4142) may be needed when moving the shock in on the arm.

**Rear Anti-Squat** is one of the most commonly used adjustments of the XXX-T MF2. As per assembly instructions, there is 2 degrees of antisquat. Removing one shim will result in 1 degree of anti-squat. Less anti-squat will have more side bite and less forward traction. Less anti-squat will also cause the car not to jump as high off of large jumps. Removing all shims will result in 0 degrees of anti-squat, this will increase the affects felt when moving from 2 to 1 degree.

**Rear Hub Spacing** can be adjusted by moving the spacers at the front and rear of the hub carrier. You will probably find that the middle (standard) location works best on just about every track. Spacing the hub back will give you less forward traction and more on power steering. This will help on large high speed flowing tracks where corner speed is immensely needed. Moving the hubs forward will increase forward traction and help the truck initiate corner entry. This can be good on tight dusty track conditions.

**Battery Location** is sometimes overlooked, but can be a useful adjustment. Start by running the battery spaced in the middle. Moving the battery back can improve rear traction on slippery tracks. Moving the battery back too far can cause the rear end to swing though turns on some tracks. This is a result of having the weight too far back. Moving the battery forward will give the truck less forward traction, but it will gain on power steering. Moving the battery forward should also smooth out the steering a little. This may be good on high bite tracks.

**Arm Length Adjustment (VLA),** the *XXX-T MF2* is like having four trucks in one. With the addition of a longer rear arm position and a shorter front arm position you can have many different setups to suit your driving and handling needs. The kit setup comes with the long rear arm position and a standard length front arm position. The new hole on the front arm is actually the inner hole (shorter arm). We have done many hours of testing and found that the kit setup is the best all-around setup for most tracks.

Shortening the front arm length will give you less steering, and the truck will drive much smoother. This can be good on tracks where the front of the truck feels twitchy, such as high-bite; blue-groove tracks. One thing to keep in mind is; as you shorten the front arm, you are actually making the camber link longer in relation to the front arm. Knowing this, you may want to shorten the front camber link when using the short arm location. The longer front arm setting (stock setup) will have more all-around steering, which is key on tracks where front grip is important.

Shortening the rear arm length will give you more forward traction and the truck will have a more aggressive feel. This can be good on dusty; low-bite conditions. Like the front arm lengths, as you shorten the rear arm, you will want to keep in mind the relation of the rear camber link length to that of the arm. You may be able to attain a more balanced feel by changing camber link positions. The longer rear arm (stock setup) setting will give you less forward traction and more side bite. This will be good on large sweeping tracks, where corner speed is so important.

We are sure that you will find the *XXX-T MF2* to be the most versatile and easiest truck to drive fast with great consistency. We at Team Losi hope this information helps you to enjoy your *XXX-T MF2* and racing as much as we do. For the latest in setup and accessory parts information, visit the Team Losi website at: **www.TeamLosi.com** 

| KEY#     | KIT/PART DESCRIPTION         | PART NO. | SPARE PARTS DESCRIPTION                                |
|----------|------------------------------|----------|--------------------------------------------------------|
| 1        | SERVO SAVER BOTTOM           | LOSA1620 | Steering/Servo Mount Assembly (Molded)                 |
| 2        | SERVO SAVER POST             | LOSA1610 | Steering Hardware Set                                  |
| 3        | SERVO SAVER TOP              | LOSA1620 | Steering/Servo Mount Assembly (Molded)                 |
| 4        | SERVO SAVER SPRING           | LOSA1610 | Steering Hardware Set                                  |
| 5        | SERVO SAVER SPRING CAP       | LOSA1620 | Steering/Servo Mount Assembly (Molded)                 |
| 6        | 6-40 LOCKNUT                 | LOSA1610 | Steering Hardware Set                                  |
| 7        | 4-40 MINI-LOCKNUT            | LOSA6306 | 4-40 Aluminum Mini Nuts (10)                           |
| 8        | STEERING IDLER ARM           | LOSA1620 | Steering/Servo Mount Assembly (Molded)                 |
| 9        | BALL STUD WASHER             | LOSA6215 | #4 Narrow Washers (10)                                 |
| 10       | 1/4" BALL STUD               | LOSA6006 | Ball Studs w/Rod Ends 4-40 x 1/4" (4)                  |
| 11       | 3/16" BALL STUD              | LOSA6001 | Ball Studs w/Rod Ends 4-40 x 3/16" (4)                 |
| 12       | STEERING DRAGLINK            | LOSA1620 | Steering/Servo Mount Assembly (Molded)                 |
| 13       | 3/32" x 3/16" BEARING        | LOSA6912 | 3/32" x 3/16" Ball Bearings                            |
| 14       | FRONT KICKPLATE              | LOSA9713 | Front Kickplate, Bulkhead, and Steering - Graphite     |
| 15       | STEERING BRACE               | LOSA9713 | Front Kickplate, Bulkhead, and Steering - Graphite     |
| 16       | STEERING HINGE PIN           | LOSA1146 | Front Outer & King Pins 3/32" x .960"                  |
| 17       | 4-40 x 3/8" CAP HEAD SCREW   | LOSA6206 | 4-40 x 3/8" Cap-Head screws (10)                       |
| 18       | THREADED CHASSIS INSERT      | LOSA6265 | Threaded Chassis Inserts - Short                       |
| 19       | MAIN CHASSIS                 | LOSA9906 | Main Chassis and Brace - Graphite                      |
| 20       | FRONT BULKHEAD               | LOSA9713 | Front Kickplate, Bulkhead, and Steering Brace          |
| 21       | THREAD LOCK                  | N/A      |                                                        |
| 22       | SHORT NECK BALL STUD         | LOSA6007 | Studded Balls w/Ends (Short Neck) 0.38"                |
| 23       | 4-40 x 7/8" CAP HEAD SCREWS  | LOSA6216 | 4-40 x 7/8" Cap-Head Screws (10)                       |
| 24       | SHOCK TOWER, FRONT           | LOSA9722 | Graphite Front Shock Tower                             |
| 25       | 4-40 PLAIN NUT               | LOSA6300 | 4-40 Hex Nuts (10)                                     |
| 26       | 3/8" BALL STUD               | LOSA6000 | Ball Studs w/Rod Ends 4-40 x 3/8" (4)                  |
| 27       | SEALED BEARING, 3/16" x 3/8" | LOSA6903 | 3/16" x 3/8" Teflon <sup>TM</sup> -Sealed Bearings (2) |
| 28       | SPINDLE, LEFT                | LOSA1126 | Spindles & Carriers - VLA                              |
| 29       | SPINDLE, RIGHT               | LOSA1126 | Spindles & Carriers - VLA                              |
| 30       | FRONT AXLE                   | LOSA1025 | Truck Front Axles, GenII                               |
| 31       | FRONT AXLE SHIM              | LOSA6230 | Shim Set, 3/16", 1/4", 1/2"                            |
| 32       | SET SCREW, 5-40 X 1/8"       | LOSA6228 | Hardned Set Screws, 5-40 x 1/8" (10)                   |
| 33       | SPINDLE CARRIER, LEFT        | LOSA1126 | Spindles & Carriers - VLA                              |
| 34       | SPINDLE CARRIER, RIGHT       | LOSA1126 | Spindles & Carriers - VLA                              |
| 35       | HINGE PIN, FRONT OUTER       | LOSA6086 | Hinge Pins, 1/8" x .960", Ti-Nitride                   |
| 36       | SPACER, SPINDLE              | LOSA2216 | Spacers (1/8" x .050")                                 |
| 37       | REAR PIVOT, ALUMINUM         | LOSA4128 | Pivot Mount, Rear, Aluminum                            |
| 38       | SUSPENSION ARM, FRONT        | LOSA9712 | Graphite Front Suspension Arms - VLA                   |
| 39       | PIVOT BLOCK, FRONT           | LOSA4129 | Pivot Block Front                                      |
| 40       | HINGE PIN, FRONT INNER       | LOSA6089 | Hinge Pin 1/8" x 1.42", Ti-Nitride                     |
| 41       | E-clip, 1/8"                 | LOSA6100 | 1/8" E-Clips                                           |
| 42       | HINGE PIN BRACE, FRONT       | LOSA9956 | Alum. Front Hinge Pin Brace - Hard Anodized            |
| 43       | FRONT BUMPER                 | LOSA4131 | Front Skidplate/Bumper - Black                         |
| 44       | 4-40 x 1/2" FLAT HEAD SCREW  | LOSA6220 | 4-40 x 1/2" Flat-Head Screws (6)                       |
| 45       | LONG BALL CUP                | LOSA6015 | Super-Duty Rod Ends (12)                               |
| 46       | 2-3/8" TITANIUM TURNBUCKLE   | N/A      |                                                        |
| 47       | FOAM THING                   | LOSA6003 | Foam Things (Linkage Rings) (24)                       |
| 48       | ANTI-SQUAT SHIM              | LOSA4127 | Pivot Mount and Shims, Forward Rear                    |
| 49       | PIVOT BLOCK, INNER REAR      | LOSA4127 | Pivot Mount and Shims, Forward Rear                    |
| 50       | REAR ARM, RIGHT              | LOSA9812 | Graphite Rear Suspension Arms - VLA                    |
| 51<br>52 | REAR ARM, LEFT               | LOSA9812 | Graphite Rear Suspension Arms - VLA                    |
| 52<br>52 | 1/8" x 2-1/8" HINGE PIN      | LOSA6049 | Inner Rear Hinge Pins, Ti-Nitride                      |
| 53<br>54 | PIVOT PLATE, REAR            | LOSA9833 | Rear Pivot Plate - Graphite                            |
| 54<br>55 | 4-40 x 3/8" FLAT HEAD SCREW  | LOSA6210 | 4-40 x 3/8" Flat-Head Screws (10)                      |
| 55<br>56 | SHOCK TOWER, REAR            | LOSA9822 | Rear Shock Tower - Graphite<br>4-40 X 3/32" SET SCREW  |
|          | 4-40 x 3/32" SET SCREW       | LOSA6249 |                                                        |
| 57       | 4-40 x 1/2" CAP HEAD SCREW   | LOSA6204 | 4-40 x 1/2" Cap-Head Screws (10)                       |

| <u>KEY #</u> | KIT/PART DESCRIPTION                        | PART NO.             | SPARE PARTS DESCRIPTION                                                                           |
|--------------|---------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------|
| 58           | #4 WASHER                                   | LOSA6350             | #4 and 1/8" Hardened Washers                                                                      |
| 59           | DOGBONE                                     | LOSA3091             | Dogbone/Driveshaft - GenII - T                                                                    |
| 60           | U-JOINT CROSS BALL                          | LOSA3027             | Universal Bearing Cross, Reubildable                                                              |
| 61           | SOLID U-JOINT PIN                           | LOSA6407             | U-Joint Pins (solid) 2.5mm x 12mm                                                                 |
| 62           | REAR AXLE                                   | LOSA3031             | OFFSET REAR AXLE, .100, XXX2                                                                      |
| 63           | U-JOINT YOKE                                | LOSA3083             | Yoke and Screw for Dogbone                                                                        |
| 64           | ASSEMBLY WRENCH                             | LOSA6030             | Assembly Wrench (version 2)                                                                       |
| 65           | HUB CARRIER, RIGHT REAR                     | LOSA2123             | Rear Hubs - VLA - 3 Hole                                                                          |
| 66           | HUB CARRIER, LEFT REAR                      | LOSA2123             | Rear Hubs - VLA - 3 Hole                                                                          |
| 67           | BEARING SPACER, FRONT/REAR                  | LOSA9942             | Bearing Spacer/Wheel Washer Set                                                                   |
| 68           | SPACER, REAR AXLE                           | LOSA9942             | Bearing Spacer/Wheel Washer Set                                                                   |
| 69           | DRIVE PIN, REAR AXLE                        | LOSA6401             | Pins — Wheels and Gears                                                                           |
| 70           | SPACER, REAR HUB                            | LOSA2127             | Rear Hub Spacers (1/8" x .060")                                                                   |
| 71           | HINGE PIN, FRONT KING/REAR OUTER            | LOSA6088             | Hinge Pins, 1/8" x 1.246", Ti-Nitride                                                             |
| 72           | 2-3/4" TITANIUM TURNBUCKLE                  | N/A                  |                                                                                                   |
| 73           | DIFF NUT CARRIER                            | LOSA2911             | One-Piece Diff Nut/Carrier                                                                        |
| 74           | 5/64" ALLEN WRENCH                          | N/A                  |                                                                                                   |
| 75           | BELEVILLE WASHER                            | LOSA2933             | Differential Screw, Hardware, and Seal                                                            |
| 76           | DIFF SPRING                                 | LOSA2933             | Differential Screw, Hardware, and Seal                                                            |
| 77           | MALE OUTDRIVE HALF                          | LOSA2935             | Outdrive Cup/Diff Set                                                                             |
| 78           | DIFF GREASE (CLEAR)                         | LOSA3065             | Silicone Differential Compound                                                                    |
| 79           | DIFF RING                                   | LOSA3070             | Transmission Drive Rings (2)                                                                      |
| 80           | 5mm x 8mm BEARING                           | LOSA6907             | 5mm x 8mm Bearings                                                                                |
| 81           | DIFF GEAR                                   | LOSA3074             | Transmission Diff Gear, 46 Teeth                                                                  |
| 82           | 3/32" CARBIDE DIFF BALLS                    | LOSA6951             | 3/32" Carbide Diff Balls (12)                                                                     |
| 83           | FEMALE OUTDRIVE HALF                        | LOSA2935             | Outdrive Cup/Diff Set                                                                             |
| 84           | DIFF ADJUSTING SCREW                        | LOSA2933             | Differential Screw, Hardware, and Seal                                                            |
| 85           | FOAM THRUST BEARING SEAL                    | LOSA2933             | Differential Screw, Hardware, and Seal                                                            |
| 86           | 3mm x 8mm THRUST BEARING WASHER             | LOSA3099             | Full Compliment Thrust Bearing Set                                                                |
| 87           | WHITE THRUST / ASSEMBLY GREASE              | LOSA3066             | Assembly Grease                                                                                   |
| 88           | 5/64" THRUST BEARING BALLS                  | LOSA3099             | Full Compliment Thrust Bearing Set                                                                |
| 89           | 4-40 x 7/8" FLAT HEAD SCREW                 | LOSA6226             | 4-40 x 7/8" Flat-Head Screws (10)                                                                 |
| 90           | TOP SHAFT                                   | LOSA9932             | Alum. Gear /Slipper Shaft, 18 Teeth                                                               |
| 91           | 4-40 x 5/16" BUTTON HEAD SCREW              | LOSA6245             | 4-40 x 5/16 Button Head Screws (10)                                                               |
| 92           | 1/16" ALLEN WRENCH                          | N/A                  |                                                                                                   |
| 94           | LEFT GEARBOX HALF                           | LOSA2938             | Transmission Case Set and Spacer (Gen II)                                                         |
| 95           | 1/2" x 3/4" BEARING                         | LOSA6908             | 1/2" x 3/4" Ball Bearings w/Teflon Seal (2)                                                       |
| 96           | MOTOR PLATE                                 | LOSA2941             | Lightened Motor Plate - Black Anodize                                                             |
| 97           | RIGHT GEARBOX HALF                          | LOSA2938             | Transmission Case Set and Spacer (Gen II)                                                         |
| 98           | IDLER GEAR SHAFT                            | LOSA2937             | Idler Gear, 32 Teeth, and Shaft                                                                   |
| 99           | TOP SHAFT SPACER                            | LOSA2938             | Transmission Case Set and Spacer (Gen II)                                                         |
| 100          | 1/8" x 3/8" BEARING                         | LOSA6909             | 1/8" x 3/8" Ball Bearings (2)                                                                     |
| 101          | IDLER GEAR                                  | LOSA2937             | Idler Gear, 32 Teeth, and Shaft                                                                   |
| 102          | 2-56 x 3/8" CAP HEAD SCREW                  | LOSA2940             | Transmission Screw Set (Gen II) Transmission Screw Set (Gen II)                                   |
| 103          | 4-40 x 1" CAP HEAD SCREW                    | LOSA6223             | · · · · · · · · · · · · · · · · · · ·                                                             |
| 104          | SLIPPER BACK PLATE                          | LOSA3132             | Slipper Backing Plate                                                                             |
| 105<br>106   | SLIPPER PAD                                 | LOSA3123             | Slipper Pad                                                                                       |
| 106          | 86 TOOTH SPUR GEAR                          | LOSA3987             | 86T 48-Pitch Kevlar® Spur Gear                                                                    |
| 107          | SLIPPER SPACER<br>SLIPPER SPRING            | LOSA3124             | Slipper Spring, Cup, Spacer, Bushing, and Washer Slipper Spring, Cup, Spacer, Bushing, and Washer |
|              |                                             | LOSA3124             |                                                                                                   |
| 109<br>110   | SPRING RETAINING WASHER<br>4-40 LOCKNUT     | LOSA3124<br>LOSA6305 | Slipper Spring, Cup, Spacer, Bushing, and Washer 4-40 Aluminum Locknuts, Low Profile (6)          |
|              |                                             |                      | Motor Guard, & Body Mnts Black                                                                    |
| 111<br>112   | MOTOR GUARD<br>4-40 x 1-1/2" CAP HEAD SCREW | LOSA4121<br>LOSA2940 | Transmission Screw Set (Gen II)                                                                   |
| 112          | SHOCK O-RING                                | LOSA2940<br>LOSA5014 | O-Rings for Shock Cartridge (8)                                                                   |
| 113          | SHOCK CARTRIDGE BODY                        | LOSA5014<br>LOSA5015 | Double O-Ring Shock Cartridge                                                                     |
| 115          | SHOCK CARTRIDGE BODT SHOCK CARTRIDGE SPACER | LOSA5015             | Double O-Ring Shock Cartridge  Double O-Ring Shock Cartridge                                      |
| 113          | SHOCK CANTRIDUE SI ACER                     | LOSA3013             | Double O-King billock Calulage                                                                    |

| <u>KEY #</u> | KIT/PART DESCRIPTION                                    | PART NO.             | SPARE PARTS DESCRIPTION                                                             |
|--------------|---------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------|
| 116          | CAP, SHOCK CARTRIDGE                                    | LOSA5015             | Double O-Ring Shock Cartridge                                                       |
| 118          | SHOCK SHAFT, FRONT                                      | LOSA5064             | 1.0" Titanium Nitrided Shock Shaft                                                  |
| 119          | SHOCK SHAFT, REAR                                       | LOSA5062             | 1.2" Titanium Nitrided Shock Shaft                                                  |
| 120          | SHOCK END                                               | LOSA5079             | Shock Ends & Cups (2)                                                               |
| 121          | BATTERY INSULATING TAPE                                 | LOSA9606             | Battery Box Insulation (Diecut)                                                     |
| 122          | 1/4 " SHOCK MOUNT BALL                                  | LOSA9940             | Aluminum H.A. Suspension Balls .250" (4)                                            |
| 123          | SHOCK PISTON                                            | LOSA5046             | Teflon Shock Pistons #56 (Red)                                                      |
| 125          | SHOCK BODY, FRONT                                       | LOSA5055             | .9" Threaded Shock Body Set w/Nuts                                                  |
| 126          | SHOCK BODY, REAR                                        | LOSA5056             | 1.2" Threaded Shock Body Set w/Nuts                                                 |
| 127          | SHOCK FLUID                                             | LOSA5224             | Team Losi Certified Shock Fluid 30wt                                                |
| 128          | SHOCK SPRING CUP                                        | LOSA5079             | Shock Ends & Cups (2)                                                               |
| 129          | A-SPACER                                                | LOSA5015             | Double O-Ring Shock Cartridge                                                       |
| 130<br>131   | SHOCK ADJUSTING NUT ALUMINUM                            | LOSA5049             | Threaded Shock Body Adjuster Nuts w/O-rings (4)                                     |
| 131          | SHOCK SPRING, FRONT/REAR<br>SHOCK MOUNT BUSHING, SHORT  | LOSA5152<br>LOSA5013 | 2.5" Spring 2.6 Rate (Red) Front and Rear Upper Shock Mount Bushings                |
| 132          | SHOCK MOUNT BUSHING, SHOKT<br>SHOCK MOUNT BUSHING, LONG | LOSA5013             | Front and Rear Upper Shock Mount Bushings Front and Rear Upper Shock Mount Bushings |
| 134          | TIRE, FRONT                                             | LOSA7507R            | Front 8-Rib Truck Tires w/Foam (Red)                                                |
| 135          | TIRE, REAR                                              | LOSA7637R            | King Pin Truck Rear w/Foam (Red)                                                    |
| 136          | FRONT WHEEL                                             | LOSA7055             | Front Solid-Face Truck Wheels -Yellow                                               |
| 137          | REAR WHEEL                                              | LOSA7155             | Rear Solid-Face Truck Wheels - Yellow                                               |
| 138          | O-RING, SHOCK NUT                                       | LOSA5049             | Aluminum Shock Adjusting Nut (4)                                                    |
| 139          | FOAM TIRE LINER                                         | LOSA7698             | Truck Foam Liners - Firm                                                            |
| 140          | 10-32 LOCKNUT                                           | LOSA6303             | 10-32 Low Profile Aluminum Locknuts (8)                                             |
| 141          | 3mm x 6mm BUTTON HEAD SCREW                             | LOSA6238             | 3mm x 6mm Motor Screw Kit                                                           |
| 142          | GEAR COVER                                              | LOSA6039             | Gear Cover with Access Plug (Gen II)                                                |
| 143          | 4-40 x 1/8" BUTTON HEAD SCREW                           | LOSA6212             | 4-40 x 1/8" Button-Head Screws (4)                                                  |
| 144          | GEAR COVER PLUG                                         | LOSA3045             | Slipper Gear Cover Plug (4)                                                         |
| 145          | SERVO ARM                                               | LOSA1620             | Steering/Servo Mount Assembly (Molded)                                              |
| 146          | SERVO MOUNTING POST                                     | LOSA1620             | Steering/Servo Mount Assembly (Molded)                                              |
| 147          | CHASSIS BRACE                                           | LOSA9906             | Main Chassis and Brace - Graphite                                                   |
| 148          | SHORT PLASTIC ROD END                                   | LOSA1615             | 30 Degree Rod Ends - Black (16)                                                     |
| 149          | 4-40 x 5/8" SET SCREW                                   | LOSA1615             | Short Ball Cups and Threaded Rod                                                    |
| 150          | 4-40 x 5/8" FLAT HEAD SCREW                             | LOSA6233             | 4-40 x 5/8" Flat-Head Screws (10)                                                   |
| 151          | BODY MOUNT, FRONT                                       | LOSA4118             | Front Bumper, Motor Guard, & Body Mnts Black                                        |
| 152          | BATTERY SPACING FOAM                                    | LOSA4015             | Battery Strap, Pad, and Foam Block - Graphite                                       |
| 153          | BATTERY STRAP FOAM STRIP                                | LOSA9911             | Battery Strap, Pad, and Foam Block - Graphite                                       |
| 154<br>155   | BATTERY STRAP<br>BODY CLIP                              | LOSA9911<br>LOSA8200 | Battery Strap, Pad, and Foam Block - Graphite<br>Body Clips (12)                    |
| 156          | TWO-SIDED TAPE                                          | LOSA4004             | Servo Tape (6)                                                                      |
| 157          | ANTENNA TUBE                                            | LOSA4004<br>LOSA4002 | Antenna Kit                                                                         |
| 158          | ANTENNA CAP                                             | LOSA4003             | Antenna Caps (8)                                                                    |
| 159          | BODY                                                    | LOSA8028             | MF2 Body and Spoiler                                                                |
| 160          | SPOILER                                                 | LOSA8028             | MF2 Spoiler                                                                         |
| 161          | WINDOW MASK                                             | LOSA8028             | MF2 Body and Spoiler                                                                |
| 162          | STICKER SHEET                                           | LOSA8356             | XXX-T MF2 Francis Edition Sticker Sheet                                             |
|              |                                                         |                      |                                                                                     |







Always Racing Towards The Future.